i

The following paper was originally presented at the
Ninth System Administration Conference (LISA ’95)
Monterey, California, September 18-22, 1995

Finding a Needle in a Virtual Haystack:
Whois++ and the Whois++ Client Library

Jeff R. Allen
Harvey Mudd College

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

Finding a Needle in a Virtual
Haystack: Whoist++ and the
Whoist++ Client Library

Jeff R. Allen — Harvey Mudd College

ABSTRACT

Powerful Directory Services are imperative in large networks to help keep users
connected to the people and resources available on the net. This paper surveys previous work
to build Internet Directory Services, and presents a set of requirements for the next
generation of Directory Service technology. Next, the paper presents an overview of a new
standards-track protocol named Whois++. Finally, client software written by the author is
presented, and freely available server software is reviewed.

Introduction

It is no secret that the Internet is growing at an
incredible pace. As a matter of fact, much of a sys-
tem administrator’s job is trying to keep up with this
growth in all the diverse ways that it affects the
organizations for which we work. With this expan-
sion comes growing pains, as technology falls
increasingly short of the demands placed on it. One
technology that has fallen drastically behind in this
rush of growth is Network Directory Services; the
job of finding people, machines, and services on the
network.

There is a loosely organized body of work
meant to correct this problem, ranging from the
Finger protocol (first documented in 1977) to the
entire X.500 effort, dating from before 1985 to as
recently as 1993. Still, we are faced with the reality
that finding people on the Internet is one of those
things best left to a network guru, one who knows
all the right nooks and crannies into which to delve.
Worse yet, the word is out to the “customers”, the
new class of users who are flooding onto the net,
that the Internet’s Directory Services aren’t up to
par. In Newsweek's Cyberscope column, the editors
made the following observation: “The Internet pro-
vides myriad opportunities for procrastination. One
of the best ways to avoid real work is trying to find
someone’s Internet address.” [NW94] They go on to
recommend a service named netfind, which works
acceptably well, but falls short of the kind of ease of
use required for a truly “good” solution.

With support from the IETF (as part of the
WNILS working group and later, the ASID working
group), another generation of researchers have
attacked the problem, this time revamping the Whois
system used by Internic (and previously, SRI’s NIC)
into a fully distributed, client/server system called
Whois++. It is the author’s belief that Whois++,
while not perfect, will prove useful in the struggle to
bring the Directory Service problem under control.

1995 LISA IX — September 17-22, 1995 — Monterey, CA

This paper introduces System Administrators to
the concepts and technology of Whois++ so that they
will be ready to adopt it if and when their users call
for it, or when they recognize a problem in their
organization that could be solved using Whois++. In
particular, the paper will discuss an API and library
that the author has developed to ease the task of
writing innovative Whois++ clients.

The Directory Services Problem Explained

The Directory Service Problem is about con-
necting people to other people. There are many peo-
ple on the network, and it is hard to keep all of the
information about all of the people accessible to all
of the rest of the people in an easy to use, easy to
search directory system. Consider, on top of that, the
tremendous rate of change of both the number of
people, and the information about them, and the
problem seems almost impossible. At all times, the
problems of scaling in the system must be con-
fronted head-on. Only through careful engineering,
including application of client/server database con-
cepts and distributed indexing technology, can a
large-scale Directory Service system succeed. (Truth
be told, it takes hard work, good politics, and a little
luck too!)

For readers who want a more rigorous
justification of the scaling problems the following
may suffice: The fundamental problem is that the
need for Directory Services grows as n? when the
community increases by n members. This is due to
the fact that in a group of n people, there are n? pos-
sible acquaintances, and if we assume the need for
Directory Services among this group is roughly pro-
portional to the number of acquaintances, then the
need grows at the square of the rate of population
growth. The constant of proportionality is anyone’s
guess, but the fact remains that the growth in the
number of acquaintances is not strictly linear. Any
system will have to take this characteristic of the

25

Finding a Needle in a Virtual Haystack: Whoist+ and the Whois++ Client Library Allen

problem into account, most likely by providing
ample scalability in the design.

In addition to concerns of raw scale, there is
another reason for the demand for Directory Ser-
vices. The Internet is becoming a competitive market
of consumers and producers, much like the US
long-distance carrier market did in the last decade.
To a professional who uses the network for business,
the change in address necessitated by a switch to a
lower-cost provider might mean lost contacts. Direc-
tory Services aren’t just an interesting research chal-
lenge anymore. Users are in need of a quick solution
to their problem: they want every contact to be able
to find them quickly and reliably, no matter where
they “reside” on the global Internet.

Due to the growing administrative complexity
of managing names and addresses in the rapidly
expanding Internet, a decentralized system of naming
authorities has been created. These groups (like
Internic and RIPE) all possess useful information
about network entities, but it is hard for users to
access, since it is spread across the network. This is
a case where a strong distributed network Directory
Service would serve users well. In fact, a protocol
called RWhois is being developed to meet the
immediate need of scaling the existing Whois system
up to handle multiple naming authorities. RWhois,
however, is tightly wed to the current Whois system.
[RFC1714]

Finally, coming up with a scalable, extensible
directory system may give other researchers the tools
they need to solve other resource discovery prob-
lems. Effort is already being put forward by the
folks at Bunyip Information Systems to merge some
of the capabilities of Archie with the distributed
characteristics of Whois++. Those working on a key
distribution facility for a public key cryptographic
system may also want to look into Whois++. As
with any well designed tool, the eventual uses can-
not even be imagined by the present day users.

Existing Systems

There are a number of systems currently in
place to assist in the demand for Directory Services,
but none of them have the scalability and ease of use
required to solve the problem in both the short and
long term.

Perhaps the earliest attempt of all at solving the
Directory Service problem in the Internet was the
Finger protocol, defined in RFC 742 in late 1977.
This simple protocol was easy to design, easy to
implement, and most importantly, solved the prob-
lem at hand nicely: it allowed the researchers on a
handful of machines to find out who was logged into
a handful of other machines on the net. From there,
it evolved into a quick and easy way for people to
distribute information about themselves to others. It
remains one of the primary ways PGP keys are

26

exchanged. With regard to solving what we now
understand as the very complicated problem of
Directory Services, Finger is a complete failure. In
its time, it was a nice little application of the evolv-
ing network.

Why doesn’t Finger fit the bill for a network-
wide Directory Service? The biggest problem is that
there is no cross-indexing in the system of servers.
There are literally millions of servers out there, each
holding a little bit of useful information. The prob-
lem is getting the right server, and retrieving the
information of interest. Because the results of a
Finger query can’t be reliably parsed by a computer
program, the arduous task of searching the global
Finger database can’t even be automated. It has to
be done by hand by an experienced network user,
one who knows how to find the information they are
after.

Like Finger, Whois was a protocol designed to
fill an immediate, pressing need. The Network Infor-
mation Center (NIC) at SRI was building a database
of useful information about Internet users. To share
this information, a stateless, one-shot TCP based
protocol was defined. It works just like Finger,
except that a more advanced syntax for searching
was established. To this day, the Whois servers at
nic.ddn.mil and rsinternic.net get thousands of
queries a day. (The InterNIC alone estimates they
received 70,000 hits a day during the month of June,
1995.) [INIC]

There were several problems with Whois. First,
the protocol was never really documented as an
official Internet Standard. Instead, RFC 954 reads
like an instruction manual for using the server. Since
no reference implementation of the server was ever
released for network-wide use, several incompatible
versions of servers that implemented Whois-like ser-
vices sprung up. That there was no reference server
is understandable, since the NIC database is stored
in a commercial database, and any code released to
the public would be essentially useless without the
same commercial server and database configuration.
Even if a compatible group of servers had been
installed as a result of the growth of Whois’ popular-
ity, there was still no cross-indexing in the system,
hobbling its effectiveness for large-scale searches.

One feature that Whois introduced to the Direc-
tory Services field was the concept of handles. In
database terminology these are “primary keys” for
the server’s database. Handles are alphanumeric
identifiers that are unique within a given Whois
server. They provide an easy way to come back to
data retrieved earlier. In some cases, the rules used
to make handles are so predictable that a search can
be formulated in the form of a handle lookup, yield-
ing a quick, focused search. This is an important
feature that can be seen in all contemporary Direc-
tory Service schemes.

1995 LISA IX — September 17-22, 1995 — Monterey, CA

Allen Finding a Needle in a Virtual Haystack: Whoist++ and the Whois++ Client Library

The 1SO/OSI solution to the Directory Services
problem came in the form of X.500. The X.500
development effort was spawned from the work on
X.400, the OSI Messaging standard. It became clear
to the X.400 developers that to make a user friendly
mail system, a strong directory service would be
required. This fact remains true today: behind most
successful LAN e-mail systems lies a proprietary
Directory Service system of some type. Typically,
they are small and hard to manage, which makes
them unsuitable as candidates for an Internet Direc-
tory Service. In e-mail systems without an integral
Directory Service, like UNIX mail, one of the big-
gest problems users face is finding the right address
to put on their e-mail.

When the X.500 effort got up to speed, people
finally realized what a hard problem wide-scale
Directory Services is and threw the heavy artillery at
it. Many man-months of work went into writing the
first X.500 specification. The result was a system
that seemed to cover all the bases, dotting all the i’s
and crossing all the t’s. The cost was complexity:
the X.500 specification is hard to understand in its
entirety and even harder to implement completely
and correctly. Writing clients for the system
requires understanding several layers of the OSI pro-
tocol, and mastering the TCP/IP interface used to
bridge the gap between the Internet and OSI worlds.

Many organizations around the world use
X.500 and/or systems derived from it to handle their
Directory Service needs. It is by no means dead, and
should certainly not be discounted. With that said,
X.500 has had a very low acceptance within the net-
working community. In the opinion of the author,
this failure to gain market share is due to three fac-
tors: complexity, politics, and search performance.

Due in part to the complexity of the protocol,
there have been few servers made available in the
public domain that support X.500. Quipu, the X.500
server that was distributed with ISODE, was poorly
supported and hard to use as a result of its status as
a research project; there were simply no resources to
make it user friendly. Some commercial enterprises
have invested in producing X.500 systems, but even
so, there has been little growth in the use of X.500.
One large company that has publicly endorsed the
standard is Novell. However, the NetWare Directory
Services system, which is based on X.500, operates
over non-standard transport layers, and is not being
deployed into a global infrastructure. Thus, even a
high-profile player like Novell has not been able to
make an impact in the use of X.500 on the public
data networks.

Sadly, in the international standards process,
sometimes political problems overshadow the techni-
cal ones. X.500 was unfortunately caught up in the
heated Internet/OSI wars of the late 1980’s, and had
a slow start out of the gate as a result. That
immense amounts of effort were lost is regrettable,

1995 LISA IX — September 17-22, 1995 — Monterey, CA

but we must push forward, learn from the past, and
try to launch a new Directory Service under more
favorable political circumstances.

By far, the biggest failing of X.500 is its inabil-
ity to deal effectively with large searches and multi-
ple directory organizations. This is the kind of prob-
lem that could only be discovered through the lim-
ited real-world use X.500 has seen in the last few
years. Because there is no shared information
between servers, queries must be flooded out to all
servers in the tree in an very inefficient manner. This
causes unreasonable delays and large network cost
for even fairly simple requests. Thus, at the highest
levels of the tree, possibly where it was needed
most, searching had to be curtailed or even turned
off. [WEI95]

One other surprising development has come on
the Directory Services scene in the last two years.
The World Wide Web seems to be capable of some
of the same features that we might demand in a new
Directory Service. Data (in the form of user home
pages) is stored all around the net in a highly distri-
buted fashion. It is cross-indexed in many ways by
many different servers, including Lycos, Yahoo, and
Open Market’s Commercial Sites Index. [LYCOS,
YAHOO, OM] Perhaps the best thing about using
the Web as a user directory is that the users are in
total control of the data. This means that data is
more likely to be quickly updated to reflect changing
circumstances. The down side, though, is that the
data will likely be completely unintelligible to intel-
ligent clients, thus making some the of the very
interesting features of a directory service system
inaccessible. For instance, it won’t be possible to
make a user interface in which you double-click on a
user’s e-mail address to begin writing a letter to
them. The browser simply won’t know which bytes
are the e-mail address, and which bytes are the
user’s favorite quote by Frank Zappa.

The ideal reconciliation of the two systems
(Web based dissemination of user information, and
structured, searchable Directory Services) will be to
make one of the attributes stored by the Directory
Service a URL pointing to the Web-based informa-
tion about the user. This way, a structured search
can be made for users, and once the desired person’s
record is found, one click of the mouse might take
you to their homepage. A different click of the
mouse might address a waiting e-mail message.

A Perfect Directory Service

Judging by the shortcomings of the existing
systems, there are four characteristics that the next-
generation system must have:

1. It must organize data into collections of
attribute/value pairs, so that machines can
parse the information automatically.

2. A new system must be distributed at all lev-
els. Data storage and indexing need not be

27

Finding a Needle in a Virtual Haystack: Whoist+ and the Whois++ Client Library Allen

separated, but they both must be distributed
across the network to withstand heavy load-
ing, and to provide uninterrupted service.

3. The new system must support fast and
efficient searching at all levels. Without
large-scale distributed indexing, this goal will
be unattainable in a huge network like the
Internet.

4. The organization of the data and indices in
the system must be able to change over time
as demands change. Indexes that cater to spe-
cial interests should be possible.

The designers of Whois++ obviously had a set of
goals like this in mind, since Whois++ fulfills each
one nicely. This should not be surprising, of course;
Whois++ is a next-generation directory service,
meant to incorporate the lessons learned from the
previous body of work.

The Whoist+ System

As hinted above, there are really two distinct
problems designers face when trying to create a
Directory Service. First, they must deal with the raw
data, defining protocols to transmit it while retaining
automatically-parseable attribute/value pairs. Second,
they must develop indexing and searching protocols
to allow users to quickly find the data of interest.
The designers of Whois++ divided the design into
two conceptual pieces, one to serve data, and one to
index it. In reality, these pieces can be implemented
in the same server, so that a given server can serve
local data and index the data of remote servers too.

The design of the database server is relatively
straightforward. It is the part of Whois++ most rem-
iniscent of the original Whois service. The main idea
is that the database server will return templates,
which are collections of attribute/value pairs

identified by a template handle. Each server in the
system has a server handle, which will eventually be
assigned by the Internet Assigned Numbers Author-
ity (IANA).I These handles are unique among all
servers in use on the Internet. Within an individual
server, each template handle must be unique. This
makes it possible to uniquely identify any template,
anywhere on the Internet, using just a server handle
and a template handle.

Within a template, attributes are distinguished
by attribute names. Since they are transmitted in full
ASCII text, and are often stored in the server the
same way, they are arbitrarily extensible. The server
administrator can add attribute names to the server’s
templates as they are required. This begs the ques-
tion of who controls the definitions of attribute
names, and how do they impose their will on the
various server administrators? The solution offered
by Whois++ is typical of the Internet community:
there is no schema administration authority. Various
IETF working groups will likely publish advisory
RFC’s to help new administrators choose reasonable
attribute names. It is the author’s opinion that ulti-
mately, the Whois++ client developers will have
control over the schema. After all, what use is a
fancy new attribute name if no Whois++ clients will
recognize it and display it usefully?

From the point of view of the client, retrieving
all that data is all fine and dandy, but the important
thing is to be able to succinctly search for records in
the database. The searching syntax is based on the

Currently server handles are being registered by Patrik
Faltstrom, <paf@bunyip.com>. Discussions are underway
with IANA to find a way to assign Whois++ server
handles without significantly impacting their existing
workload.

C: <connect to muddcs.cs.hmc.edu, port 5050>

S: % 220-This is muddcs running Bunyip-Whois++: DIGGER 1.0.2
S: % 220 Ready to go!

C: handle=jeff

S: % 200 Search is executing

S: # FULL USER CSHMCEDUO JEFF

S: NAME: Jeff R. Allen

S: EMAIL: jeff@hmc.edu

S: ORGANIZATION-NAME: Harvey Mudd College

S: DESCRIPTION-URI: http://www.cs.hmc.edu/~jallen
S: # END

S:

S: % 226 Transaction complete

S: % 203 Bye, bye

S: <disconnect>

Figure 1: This is a transcript of the retrieval of a single template from a Whois++ server. The server handle for
this particular server is ““CSHMCEDUQ"". Lines preceded with *‘S’” come from the server. Lines preceded

by ““C’” come from the client.

28

1995 LISA IX — September 17-22, 1995 — Monterey, CA

Allen Finding a Needle in a Virtual Haystack: Whoist++ and the Whois++ Client Library

original Whois protocol. The syntax is specified in
exacting detail in the protocol specification, so it
would be pointless to cover it completely again here.
[DEU95] Basically, a search string is composed of
tokens from the template(s) that you’d like to match.
The keywords and, or, and not can be used to
modify the search. To further constrain where in the
template a token can match, attribute identifiers can
be used. Thus, a search for “Name=Smith” will not
match a record in which the only “Smith™” token is
in the “Postal-Address” attribute. Finally, a specific
template can be retrieved by using a handle search,
assuming the user knows the handle. The form for
this type of search is predictable: “Handle=
handlename”. Unless specifically requested to be
case-sensitive, all matches are case-insensitive. Attri-
bute matching is always done case-insensitively.

When a search is too broad, it may return many
more hits than are actually useful to the user. In
some cases, searches can be devised to return virtu-
ally every record stored by the server. To prevent
simple overloading by broad searches, and malicious

attempts to download the entire database, Whois++
servers enforce several constraints on the searches.
The most important is “Max-Hits”. An absolute
limit is set on Max-Hits by the server administrator.
No client can ever receive more than this number of
templates in response to a single request.

Without additional cross-indexing technology,
however, Whois++ is not much better than Whois, or
Finger for that matter. The cross-indexing capabili-
ties of the protocol are what make it so special, and
may in the long term, allow Whois++-based systems
to solve problems not directly related to Directory
Service. The cross-indexing takes the form of cen-
troid passing. In physics, the centroid of an object is
the center of all mass, a kind of balancing point. In
the Whois++ world, it’s a list of tokens that
represents all of the words known by a server. More
precisely, the centroid of a particular template type
in a server is the collection of all tokens occurring
within all templates of that type. The example in
Figure 2 may make the definition clearer.

Record 1

Template: Person
First-Name: John
Last-Name: Smith

If the server
contains these
templates:

Then the centroid
will look 1like
this:

Template:
First-Name:
Last-Name:

Record 3

Template: Person
First-Name: John
Last-Name: Jones

Record 2
Template: Person
First-Name: Joe
Last-Name: Smith

Person
Joe, John
Smith, Jones

Figure 2: The centroid for the three records shows that all the tokens originally present are accounted for, even

though the centroid is much smaller.

% 220 Ready to go!

smith

% 200 Search is executing

FULL USER CSHMCEDUO SMITH
NAME: Robert Smith

EMAIL: Robert Smithe@hmc.edu

END

SERVER-TO-ASK CSHMCEDUO
Server-Handle: CSHMCEDU5
Host-Name: MUDDCS.CS.HMC.EDU
Host-Port: 5055

END

% 226 Transaction complete

% 203 Bye, bye

<disconnect>

NN nNnhn un nn n nnhn nhnh nn Qhn N

n

<connect to muddcs.cs.hmc.edu, port 5050>
% 220-This is muddcs running Bunyip-Whois++: DIGGER 1.0.2

ORGANIZATION-NAME: Harvey Mudd College

Figure 3: This transaction shows a Whois++ client/server interaction in which both a template and a referral are
returned. It is the client’s responsibility to carry out the additional query suggested by the server named
*“CSHMCEDUOQ’’ on the server named ‘““CSHMCEDU5"".

1995 LISA IX — September 17-22, 1995 — Monterey, CA

29

Finding a Needle in a Virtual Haystack: Whoist+ and the Whois++ Client Library Allen

A centroid represents the set of knowledge the
server has about a its domain of the distributed data-
base. Let’s call this little server with the three tem-
plates above “Server A”. If its centroid were passed
to another server (call the receiver “Server B”)
responsible for indexing all the Whois++ servers on
the network, it would be immediately obvious to
Server B that Server A can’t help with a query like,
“Last-Name=Schwartz”. This is because “Schwartz”
doesn’t appear under the “Last-Name” attribute in
the centroid that Server B received from Server A.

As soon as servers start passing centroids, a
kind of order, or hierarchy, develops. Those servers
with more substantial centroids (gathered from
several subservient servers) are more likely to be
able to match a query. However, when they match a
query based on data from a remote server, there is
no way for them to reconstruct the template to be
able to present it to the client. Nor does the master
server even have the authority to do so; for all it
knows, the template may have changed in the sub-
servient database since the centroid was received.
Instead of attempting to return all templates that
match a query (an impossible feat, given the infor-
mation available in a centroid), servers are allowed
to return referrals to other network servers that may
be able to fulfill the query. Figure 3 shows a referral
from a master server for Harvey Mudd to a subser-
vient server, also at Mudd.

Directory Services in the past (notably X.500)
have suffered because their indexing structures were
fixed by the design. The Whois++ design attempts to
get around the problem by easing the restrictions on
server-to-server connections. Because servers can
pass centroids in virtually any configuration, multiple
indexing-server configurations are possible. Since the
client is responsible for tracking cross-references
within the global database, it can detect loops in the
references it receives. Thus, there is no need to pro-
tect the system’s hierarchy from loops. Instead of
constructing a strict server tree, administrators will
create a server mesh.

Currently, those servers which are running are
configured as a strict tree, with the server at
services.bunyip.com, port 63 as root. However, it
isn’t hard to see how a parallel mesh might be use-
ful, one that only indexes commercial entities, for
instance, or one which will specialize in templates
which represent files available for anonymous FTP.

We have reviewed both the database server and
the index server. The only piece of the system left to
explore is the client. Whois++ clients will likely
come in all shapes and sizes, as opposed to the very
limited clients available for Whois today. They will
also likely be hidden deep in other applications,
which will benefit from using the protocol. Whois++
clients will be able to make use of the data returned
from a Whois++ server in ways Whois clients were
never able to. For instance, an e-mail application

30

might have a built-in Whois++ client. At the “To”
prompt, the user will request help finding a user’s
name. By making a Whois++ query, they will find
the name they are looking for. The client software
will be able to scan the attribute/value pairs that are
returned and find the one for “E-mail address”. With
a double-click (or a drag-and-drop, or whatever) the
user can add the recipient to the message. This type
of feature is something Microsoft Mail and Lotus
cc:Mail users have had all along, but they have
never had the entire Internet indexed via an Internet
standard protocol.

What’s involved in writing a client? A client
needs network control code, to make and break con-
nections to servers. It needs to parse the slightly
more complicated messages Whois++ servers return.
Finally, it needs to manage the search, so that server
loops are avoided, and so that searches get expanded
in a sensible way to make sure the requested infor-
mation is found somewhere in the mesh.

Because so much of the intelligence required to
conduct a distributed query has been designed out of
the server and into the client, it will be somewhat
harder to write Whois++ clients than it was to write
clients for previous services. However, with a gen-
eral purpose, easy to use API (and its implementa-
tion, a Client Library), writing clients could become
easy. The details of Whois++ server interaction, loop
detection, and query management can be left to the
library, while the programmer concentrates on a
good user interface, or on the useful application of
the retrieved information. Whois++ clients may not
always have user interfaces, either. Any program
that uses the Whois++ protocol may profit from use
of the library. For instance, an X.500 to Whois++
gateway daemon might make use of the library.

The Whois++ Client Library (WCL)

The Whois++ Client API specifies a set of data
types and function calls used to interact with
Whois++ servers. The implementation (written in C
with an interface to Perl 5) makes it easy to write
Whois++ clients. The library has the following
features:

® A server cache, to amortize high TCP startup
time across multiple queries.
e Easy-to-use exception handling using call-
backs.
o A full implementation of the Whois++ mesh
traversal algorithm. [FAL95]
o No hard-coded limits on template, attribute, or
value size.
The Whois++ Client Library (WCL) comes with a
text-based client for use for both testing the library,
and as a ready-to-use Whois++ client. It also func-
tions in one-shot command-line mode for use in Perl
4 and shell scripts. A prototype HTTP-to-Whois++
gateway geared to making user lookups possible via
a friendly Web-browser interface is also included

1995 LISA IX — September 17-22, 1995 — Monterey, CA

Allen Finding a Needle in a Virtual Haystack: Whoist++ and the Whois++ Client Library

with the distribution, demonstrating just how easy it
is to put a nice user interface on the pre-existing
library code.

The library compiles on SunOS 4.1.3, Solaris
2.X, and Irix 5.x. It is POSIX- and ANSI-compliant
source, which should integrate easily with most
development environments. See the section named
“Software Availability” below for more information
about how to get the package.

The Library in Action

To whet the reader’s appetite for the library,
two example uses of WCL will be described here.
The first is the Whois++ to HTTP gateway men-
tioned above. This type of application is certain to
make users happy, but how can an overworked sys-
tem administrator benefit from Whois++ technology?
The second example shows a subroutine that could
be added to a Perl 5 user creation script to derive the
new user’s vital statistics, given a handle in the
existing Whois++ server.

The first thing a user of the HTTP to Whois++
gateway sees is a forms-based representation of a
Whois++ query. Upon submitting the form, the
Whois++ query takes place. If there are several
matches, an intermediate page requesting a selection
pops up. Once the user has narrowed the query to a
single template, the system returns and displays a
page describing the user. If the user has made the
required information available, a hypertext link to
their homepage, a picture, and a “‘mailto:”” link are
all included by the gateway.

For the hard-core sysadmin, who prefers not to
use a GUI, here’s a more useful tool: a Perl 5 sub-
routine which can automate the information-

gathering part of a user creation script. This exam-
ple assumes that a corporate database representing
all users is already available via a Whois++ server.
(See the section on “Whois++ Servers” below for an
idea on how this might be accomplished.) Further-
more, it assumes that the handles in the database are
employee identification numbers. System Adminis-
trators who work for academic institutions may want
to think of these assumptions in terms of a “student
database” and “student numbers”. Figure 4 shows a
rough sketch of what the relevant parts of the script
might look like. The first line imports code needed
to make sure that the functions will be autoloaded at
the appropriate time. After that, a prototypical sub-
routine call is shown. This call would likely come
near the beginning of the script, after the employee
number has been read from user input, or from a file.
Finally, the subroutine is shown. In this case, the
library is only being called upon to offer server
management and template parsing services. Since we
know that the employee number must map to a tem-
plate on the local server if it is valid, there is no
need to go off probing other servers in the mesh.
Finally, the name and uid are returned. In the case of
an invalid employee number, a list consisting of a
pair of empty strings will be returned. The calling
program can then take appropriate action.

Whoist++ Servers

Like all protocols in the Internet suite, a refer-
ence server of one sort or another has existed
throughout the development of the protocol to help
make sure that the grand ideas were actually imple-
mentable. The reference server (currently the only
one available, though that’s likely to change in the
coming months) was written by Patrik Faltstrom of

use WCL;

[... user code goes here ...]

(uid, sname) = getUserInfo($employee num) ;
[... rest of script goes here ...]

sub getUserInfo {
my (Semp) = @ ;
my $slot, @res, %av;

S$sid = wclMakeServid ($Sserverhost,
Sslot = wclGetServer ($sid) ;
@res = wclParse (wclCommand ($slot,

Sserverport) if (! defined(s$sid));

"handle=$emp")) ;

4th element of result is a list of the a/v pairs. This conversion
implicitly loses ordering and repeated keys, which are defined by the
protocol to be significant. We choose to ignore them for this example.

$av = Sres([3];
return ($av{"UID"}, S$av{"Name"}) ;

¥

Figure 4: A subroutine to retrieve user account information from an existing corporate database for use in an

account creation script.

1995 LISA IX — September 17-22, 1995 — Monterey, CA

31

Finding a Needle in a Virtual Haystack: Whoist+ and the Whois++ Client Library Allen

Bunyip Information Services, Inc. Bunyip has gen-
erously allowed the Internet community free use of
the server (named ‘Digger’), although its code is
copyrighted code and may not be redistributed.
Availability of the most recent version is discussed
in the section named “Software Availability”, below.

Digger is written in C and uses an SQL data-
base for the back end, where the actual data and
centroids are stored. Digger currently supports two
database backends (Oracle and mSQL), and can be
ported relatively easily to other database systems.
mSQL is a relatively new publically redistributable
shareware SQL server written by David J. Hughes of
Bond University.2 Digger ships with the newest ver-
sion of mSQL, though it is also available separately
from Bond University. [BUNYIP, MSQL]

Installing Digger is a breeze, thanks to Patrik’s
use of GNU autoconf and a clever INSTALL script.
Installing mSQL is just as easy. Because all of the
code is written to the POSIX specification, it should
be easy to get the servers running on other fairly
modern machines. As usual, both authors welcome
e-mail describing any minor difficulties encountered
during the installation process. Both packages are
known to build correctly on SunOS 4.1.x, Solaris
2.x, HP-UX, Linux and OSF/1.

The biggest job a Whois++ server administrator
faces is acquiring and formatting data into a form
suitable for Digger’s template insertion program.
There are both technical and political problems here
that sysadins will need to solve locally. Bunyip has
promised a set of scripts to aid template conversion
(send e-mail to digger-info@bunyip.com for more
information about these scripts). Most administrators
will want to set up a system which provides periodic
updates from a central database, since it is important
to keep the Whois++ server’s data up-to-date with
respect to the main database.

A truly adventurous SQL hacker may like to
link Digger directly to an existing user database
using the internal interfaces to SQL that Digger pro-
vides. Though there are no known examples of this
type of project underway, only small pieces of code
should theoretically be required, and the benefit (no
time-delay induced inaccuracy between the data-
bases) should outweigh the investment. Perhaps a
future LISA paper will describe a project like this.

Administrative and Legal Challenges

Because of the perceived potential for abuse,
developers of electronic Directories have often faced

2mSQL is a very important, very useful piece of
software which the Internet has needed for some time.
David Hughes has earned the right to license his software
for a small fee. Please read the license which comes with
his software carefully and comply with it, if you choose to
use his software.

32

opposition from non-technical, but nonetheless
interested parties, thus compounding the difficulty of
the Directory Services Problem. This is a part of the
problem that needs to be faced, perhaps even more
urgently than the technical aspects.

Various groups, including privacy-advocacy
lawyers and law makers, corporate executives, and
academic administrations have all gotten involved in
the fray at one time or another, each pushing essen-
tially the same argument: electronic directories are
an infringement on a person’s right to privacy, and
must therefore be unconditionally blocked.

The fundamental problem with the argument
that electronic directories invade people’s right to
privacy is that less visible, but highly invasive direc-
tories already exist at the disposal of the privileged
few. The entire Direct Marketing industry revolves
around managing, trading, processing, and building
lists of names. These directories are not made avail-
able to the public for useful ends. Instead, literally
millions of tons of unsolicited mail is sent to the
“lucky” members of these mailing lists. Other exam-
ples of privacy invasions from electronic directories
surround us: credit reporting agencies, credit-card
records used to create consumer spending histories,
etc. Finally, it’s helpful to ask oneself, “what’s the
difference between the Directory Service offered by
a telephone company and one offered over a com-
puter network?” If the telephone company can pro-
vide such a useful service, network providers cer-
tainly should be able to.

It all comes down to the rights of the person
whose privacy will allegedly be invaded. All of the
potential good that a public access electronic Direc-
tory can do, in this author’s opinion, is worth the
risk that a little bit of electronic privacy might be
lost. But that’s just the point: this tradeoff is an indi-
vidual decision, and every person who is listed in
every directory has a right to control how much
information is available, and to whom. In addition,
every user always has the right to submit changes to
the data, and have their records promptly updated.
These rights are respected by the other maintainers
of lists. The Direct Marketing Association provides a
registry of people who want to be excluded from the
industry’s “service”.3 Telephone companies provide
unlisted numbers as a regular service to subscribers.
Electronic Directory providers can and should pro-
vide the same types of service.

These principles of user control and notification
are discussed in RFC 1355 and RFC 1295.
[RFC1355, RFC1295] Administrators would be well

3Call the Mail Preference Service at (212) 768-7277 and
ask to be added to their Suppression File. For more
information about protecting your privacy, see the FAQ on
junk mail posted occasionally by Chris Hibbert
<hibbert@netcom.com> to misc.consumers.

1995 LISA IX — September 17-22, 1995 — Monterey, CA

Allen Finding a Needle in a Virtual Haystack: Whoist++ and the Whois++ Client Library

advised to review and share these particular docu-
ments with management personnel before attempting
to put a large database online for public use. Taking
the time to put together a coherent policy on how
users relate to the data being published about them
may reduce future problems.

It’s Not Just For People Anymore...

With a service as general and powerful as
Whois++, data of virtually any type can be indexed
and served via the Whois++ protocol. Just some of
the possible applications include the items below.
Public-key encryption system key-servers

While it will likely be impossible to securely
offer full key escrowing services via a Whois++
server, the protocol will be useful to handle insecure
key exchanges like those used by PGP. In this case,
the Whois++ client/server system would simply
automate what is already commonplace on the Inter-
net today. Key exchanges are usually manually car-
ried out via the Finger or HTTP protocols.

URN-to-URL trandators

Some plans to supplant Uniform Resource
Locators (URLs) with more general Uniform
Resource Names (URNSs) call for an infrastructure of
servers to translate the various tags. These servers
must come up with the closest, fastest, or cheapest
URL for a given URN, and may be called upon to
provide reverse mappings too. Whois++ should be
up to the challenge, even though the translation data-
base will be widely distributed and quickly chang-
ing.

Interpedia search engines and/or SOAP managers

Plans for an Internet-wide, publically authored
encyclopedia representing the knowledge of all the
Internet’s users call for careful indexing and very
fine-grain data distribution. In addition, the manage-
ment of SOAPs, or Seals of Approval may be a
problem suited to Whois++ technology. [RHINE]

Conclusion

It is the author’s opinion that the Whois++
architecture will be a useful step forward in Direc-
tory Service technologies, enough so that it is
worthwhile to develop clients for it to spur the
market for Whois++ servers. With the use of the
Whois++ Client Library, it should be easy to pro-
duce powerful, interesting Whois++ clients to solve

the problems of a growing Internet. And with power-
ful, easy to use clients, the market for servers (both
free and commercial) will develop.

Whois++ and WCL will be up to each of the
challenges above. All that’s required is a little ima-
gination and some hard work. WCL eases the bur-
den, leaving the programmer free to work on the
challenging problem of managing and presenting the
data in a useful way.

Softwar e Availability

All of the relevant URLSs are provided in Figure
5. The version numbers are correct at the time of
this printing, but they will change over time. With
the exception of mSQL, all of these products are
free, copyrighted works. There is a small shareware
fee for mSQL.

Author Information

Jeff R. Allen is a full-time student in his final
semester at Harvey Mudd College in Claremont, CA.
His computer-related interests include stupid Perl
tricks, innovative user support, and single-handedly
solving the Directory Service Problem, though gra-
duating must take priority to all others at this time.
When he is away from computers, Jeff likes to read,
unicycle, and plan pranks against CalTech (though
they seldom actually see fruition). E-mail messages,
including job offers, are gladly accepted at:
jeff@hmc.edu.

References

[ALLENO95] Allen, Jeff R. “Whois++ Client API
v2.0a” (work in progress) http://mww.cs.hme.
edu/~jallen/wppcl

[BUNYIP] Bunyip Information Services, Inc. Digger
home page. http://services.bunyip.com:8000/
products/digger/digger-main.html

[DEU95] Deutsch, Peter, Rickard Schoultz, Patrik
Faltstrom, Chris Weider. “Architecture of the
WHOIS++ Service” (work in progress)
ftp: //ftp.internic.net/inter net-drafts/dr aft-ietf-
asid-whois-arch-03.txt

[FAL95] Faltstrom, P., R. Schoultz, C. Weider.
“How to interact with a Whois++ mesh”.
(work-in-progress) ftp://ftp.internic.net/internet-
drafts/draft-ietf-asid-whois-mesh-01.txt

[INIC] Personal correspondence with Internic
engineers at: <action@internic.net>, July 1995.

API: http://www.cs.hmc.edu/~jallen/wppcl

ftp://ftp.hmc.edu/pub/research/wppcl/api.ps.Z

WCL: ftp://ftp.hmc.edu/pub/research/wppcl/wcl-2.0a.tar.Z
Digger: ftp://ftp.bunyip.com/pub/digger/software/digger-1.0.4.tar.gz
mSQL: ftp://ftp.bond.edu.au/pub/Minerva/msgl/msql-1.0.7.tar.gz

Figure 5: Where to find the software

1995 LISA IX — September 17-22, 1995 — Monterey, CA

33

Finding a Needle in a Virtual Haystack: Whoist+ and the Whois++ Client Library Allen

[LYCOS] Mauldin, Michael L. “Lycos, The Catalog
of the Internet.” http://lycos.cs.cmu.edu

[MSQL] Hughes, David J. mSQL Information and
Distribution. ftp://ftp.bond.edu.au/pub/Minerva/
msql

[NW94] Newsweek, December 5, 1994, page 10.

[OM] Open Market Inc. “Open Market’s Commer-
cial Sites Index” http://www.directory.net

[RFC742] Harrenstien, K. RFC 742, NAME/
FINGER. December 30, 1977. ftp://ftp.
internic.net/rfc/rfc742.txt

[RFC954] NICNAME/WHOIS. K. Harrenstien, M.
K. Stahl, E. J. Feinler. October 1, 1985
ftp://ftp.internic.net/rfc/rfc954.txt

[RFC1295] The North American Directory Forum.
User Bill of Rights. January 1992. ftp://ftp.
internic.net/rfc/rfc1295.txt

[RFC1355] Curran, J., Marine, A. Privacy and Accu-
racy Issues in Network Information Center
Databases, August 1992. ftp://ftp.internic.net/
rfc/rfc1355.txt

[RFC1714] Williamson, S., Kosters, M. Referral
Whois Protocol (RWhois). November 1994,
ftp://ftp.internic.net/rfc/rfcl714.txt

[RFC1758] NADF Standing Documents: A Brief
Overview. The North American Directory
Forum. February 1995. ftp://ftp.internic.net/rfc/
rfc1758.txt

[RHINE] Rhine, Jared. Interpedia Research informa-
tion. http://mww.math.hme.edu: 8088/inter pedia

[WEI95] Weider, Chris, Jim Fullton, Simon Spero.
“Architecture of the Whois++ Index Service”.
(work in progress) ftp://ftp.internic.net/
inter net-drafts/draft-ietf-wnils-whois-05.txt

[YAHOO] Filo David, Jerry Yang. “Yahoo.”
http: /imww.yahoo.com EM

34 1995 LISA IX — September 17-22, 1995 — Monterey, CA

