i

The following paper was originally presented at the
Ninth System Administration Conference (LISA ’95)
Monterey, California, September 18-22, 1995

LPRng - An Enhanced Printer Spooler System

Patrick Powell - San Diego State University, San Diego, CA
Justin Mason - lona Technologies, Ireland

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

LPRNg

— An Enhanced

Printer Spooler System

Patrick Powell — San Diego State University, San Diego, CA
Justin Mason — lona Technologies, Ireland

ABSTRACT

The LPRng software is an enhanced, extended, and portable version of the Berkeley
LPR software. While providing the same general functionality, the implementation is
completely new and provides support for the following features: lightweight (no databases
needed) lpr, Ipc, and lprm programs; dynamic redirection of print queues; automatic job
holding; highly verbose diagnostics; multiple printers serving a single queue; client programs
do not need to run SUID root; greatly enhanced security checks; and a greatly improved

permission and authorization mechanism.

Introduction

Print spooler software is one of the most com-
mon and heavily used system application programs.
While printing may appear to be simple on the sur-
face, in practice it is complicated by the following
problems. Each model of printer has a peculiar set
of interface and format requirements; this means that
the printer software must be highly configurable at
the device interface level. Next, multiple users may
want to share the same printer; this leads to the need
for a spooling system with the associated problems
of priority and fair use. Printers are notorious for
failing at the most inopportune times; the spooling
software needs to report failures and to reconfigure
or repair the system in a simple manner. Finally,
the software should be portable so that the same
software can be used on different systems; in a net-
work based system this introduces the problems of
security and authentication.

The LPRng Printer Spooling [Pow95] software
is a descendant of the 4.3 BSD Line Printer Spooler
Software (LPR),[Cam94] but has totally redesigned
and reimplemented. The evolution started in 1986 at
the University of Waterloo, where the original 4.3
software was modified to support a variety of new
printers. Due to restrictions with the original AT&T
and Berkeley software license these modifications
could not be distributed. The problems encountered
during this process led to the development of the
PLP (Public Line Printer) software [Pow95a] and
PLP Version 3.0 (PLP3.0) was released in 1988.
The PLP software architecture was based on the the
original LPR code, but with highly verbose diagnos-
tics and a much more elaborate set of administration
functions.

From 1988 to 1994 various sites and adminis-
trators modified and extended the PLP3.0 software.
The plp@iona.ie mailing list was formed to dis-
tribute and coordinate these changes, and in 1994 a
major programming effort by Justin Mason

1995 LISA IX — September 17-22, 1995 — Monterey, CA

<jmason@iona.ie> restructured the PLP3.0 code,
integrated the majority of extensions, and PLP4.0
was released in 1995.

The complexity and problems with the PLP
software have been discussed in the plp@iona.ie
mailing list as well as various USENIX newsgroups.
Given the current network security issues,
client/server based applications, and growing
administration problems, it was clear that the PLP4.0
software would need extensive revisions. The need
for a new version of print spooling software dis-
cussed, and there was general agreement on the fol-
lowing design goals.

First, run time diagnostics and detailed error
reporting were essential and should be the highest
priority. When problems occur users and administra-
tors must quickly diagnose the causes, and obtaining
information is essential. Next, the user interface to
the printing facilities should change as little as possi-
ble. This would allow a gradual evolution from LPR
and PLP to the new software with as least surprises
to the users as possible. However, the administra-
tive interface could change, and many improvements
and changes were suggested. It was essential that
the new software be compatible at the network inter-
face level with other implementations of the LPR
spooling software. While in 1990 the RFC1179 -
Line Printer Daemon Protocol [McL90] documenting
the network protocol to be used to transfer print jobs
and status information between line printer spooling
programs was published, many of the existing imple-
mentations do not conform to RFC1179 or have
made extensions to the RFC. The existing LPR and
PLP software uses a set of filter programs to inter-
face to various printers. A major concern of
administrators was that these vintage filter programs
should be usable with the new software. Finally, the
long list of security, administration, and networking
problems should be eliminated if at all possible.

13

LPRnNg

These considerations led to the design and
development of the LPRng software. While it is a
totally new design and implementation of spooling
software, it uses routines and support code from the
Free Software Foundation GNU Project, and is dis-
tributed under the GNU Copyleft License. [GNU91]
The LPRng software was intentionally designed to
use as few non-portable or non-standard Operating
System facilities as possible, or to use them in a
highly controlled and portable manner. The use of
the GNU utilities such as autoconf and Gnumake
allow operating system dependent versions of vari-
ous support routines to be selected at compile time
in an automatic manner.

The following sections discuss the overall
architecture of the LPRng software, and then deal
with the major components. The emphasis of this
discussion are the added functionality or differences
of LPRng. The LPRng configuration information,
extensions to the printcap database, and changes to
the 1pr and other client programs is discussed. The
operation of the job spool queues and the new algo-
rithm used for job printing is then covered, together
with a description of the filter interface mechanism.
Security and associated problems with SETUID
ROOT programs is briefly discussed, and the sum-
mary at the end lists some outstanding issues.

LPRng Software Architecture

The LPRng software architecture is shown in
Figure 1. While LPRng is similar in structure to the
Berkeley LPR software, it differs in many important
details. The dashed lines indicated TCP/IP based

Powell & Mason

communication between two programs; solid lines
represent access to files or directories. Boxes with
dotted outlines represent databases that may be
accessed by all programs, either as files or by using
network facilities. The user programs such as the
print spooler 1pr, status reporter 1pgq, job remover
lprm, and control program 1pc are now client pro-
grams which connect to one or more lpd server
processes using TCP/IP. After validation and
authentication the servers carry out requested activi-
ties on files and or provide status information. The
configuration and printcap databases provide the
information needed by both server and client pro-
grams. While clients do not need access to the
printcap database, in many cases a runt database is
useful for providing printer configuration informa-
tion.

As in the LPR software, the 1pd server
manages one or more spool queues where print jobs
are stored. These are are implemented as directories
in a file system. A print job consists of a control
file, which contains user information and printing
options, and data files which contain the actual infor-
mation to be printed. A spool queue can be a
bounce or forwarding queue, which temporarily
stores print jobs before they are transferred to
another queue, or a print queue which has an associ-
ated printer.

Operation of a spool queues is controlled by
information in the spool queue printcap entry and the
printer control file in the spool directory; individual
print job may also have a job control file as well.

LPRM LPQ LPC

/usr/export/LPD/t1l
Databases
..................... cfA003h1
config
..................... dfa003h1
printcap dfB003h1
permissions

cfA004hl

dfA004hl

t2 server)
Filters
(LPD)
N
i of
- = LPD .
¢ : bp
‘IH%HHI' if
/usr/spool/t2 :
control.t2 :
cfA001h1 v§
dfA001h1 1p
hfA001hl (/dev/1p)

cfA006h2.com
dfA006h2.com

Figure 1: LPRng Spooling Software Architecture

14

1995 LISA IX — September 17-22, 1995 — Monterey, CA

Powell & Mason

Jobs are submitted to the 1pd server by the
1pr program which transfers the job over a TCP/IP
connection. The 1pd server then forwards the job
to another server or print it. The 1pg program
requests and prints job status information, and the
lprm program removes jobs from the spool queue.
The LPRng software uses a permissions database
and the printcap information to determine if a user is
authorized to use a facility; authorization can be
based on originating host, user name, and a variety
of other attributes.

After a job is placed in a print queue, 1pd
creates a server process to manage the printing
operations. This server process then creates the
necessary filter processes which interface to the
printer hardware. The data files are passed through
the filters to the actual printer.

Configuration Information

Configuration information is used by both the
LPRng clients and the 1pd server. The
configuration information controls the network
behavior of the programs, and provides a set of
default for commonly specified system information.
Compile time defaults can be overridden by values
read from a configuration file, whose format is
shown in Figure 2.

In all LPRng database files leading whitespace,
blank lines, and lines whose first non-whitespace
character is a # are treated as comments and
ignored; a \ as the last character of a non-comment

LPRnNg

line will logically continue this line to the next line,
replacing the \ with one or more spaces.

Each line of the configuration file has a
configuration variable and its value. The
client configuration file and server
configuration file values are used only at
startup and initialization, and specify the
configuration files for the LPRng client and 1pd
server programs. Each of the configuration files is
read in sequence and variable values are updated as
the files are read.

Much of the configuration information provides
site dependent information or allows configuration
for testing. The default printer and
default host variables set the default printer
and host to be used by client software; the $h and
$H strings are replaced with the short or fully
qualified domain name of the host on which the
software is running. The default
banner printer sets the default banner printing
program to be used by the 1pd server; the lock-
file and logfile are used by the 1pd server to
prevent multiple servers from running and to record
1pd logging information.

The 1pd port variable specifies the TCP/IP
port on which the 1pd server listens for client
requests. In production versions this is usually 515
(the printer alias in the network service data-
base); by setting it to some other port a test version
can be run in parallel with production software.

ENG LPRng Test Configuration
compile time only:

#client configuration file /etc/lpd.conf:/etc/lpd client.conf

#server configuration file /etc/lpd.conf

default printer tl

default host $H

default banner printer /usr/local/bin/lpbanner
lockfile /usr/spool/LPD/1pd. lock
logfile /usr/adm/lpd.log

#1lpd port printer

lpd port 4000

originate_port 721 731

user daemon

group daemon

#printcap path
printcap_path
#printcap_path
#printer perms path
#printer perms path
printer perms_path

/etc/printcap:/usr/etc/printcap
/tmp/LPD/printcap.%H

| /tmp/LPD/pcserver
/tmp/LPD/printer perms.%H
/etc/printperm: /usr/etc/printperm
/tmp/LPD/printer perms.%H

#print perms_path | /tmp/LPD/permserver
use_info cache yes

include facility

include /tmp/LPD/common.conf

Figure 2: Configuration Database Format

1995 LISA IX — September 17-22, 1995 — Monterey, CA

15

LPRnNg

The originate port value specifies a
range of TCP/IP port numbers for originating con-
nections. RFC1179 specifies that these connections
should originate from port 721 to 731 inclusive; in
most UNIX environments these are privileged ports
and cannot be used unless the program’s effective
UID is ROOT (0). On a UNIX system, if the client
software is not SETUID ROOT, then only the
ROOT user can successfully bind to a privileged
port. See Security Considerations for details on
problems this may expose. The user and group
entries specify the effective user and group IDs to be
used by the 1pd server. For this to be effective, the
1pd server must be SUID root or be started by a
root process; see Security Considerations for details.

The printcap path and printer perms
specify where database information will be found;
this information may need to be read repeatedly by
the 1pd server. The use_info_ cache option
allows the server to read the information once at
startup and then use a cached copy of this informa-
tion, as does the inet .d server. If 1pd receives a
SIGHUP signal it rereads the database information.
Finally, it is possible to use the include facility to
read additional configuration files. This facility may
be removed in later releases of the LPRng software.

Printcap Information

Entries in the printcap database define spool
queues and their configuration available to the
LPRng software. Figures 3a and 3b show a set of
client and server printcap database entries. Leading
whitespace, blank lines, and lines whose first charac-
ter is ‘#’ are ignored. For compatibility with the
historical LPR printcap format, \ at the end of a line
appends the next line to the current line.

Client Printcap Database
printer pl@’local host’
pl
remote printer
p2
| full |double | rotate
| twosided|XDR Line Printer
:1lp=p2@host
remote printer alternative
p3:rp=p3:rm=host
connect to port 2000
p4:2000%host
all entry (lpg -a)
all:all=pl,p2,p3

Figure 3a: Client Printcap Examples

A printcap entry consists of a primary name
followed by an optional set of aliases, followed by
an optional set of variable tag names and values.
The primary name is the name by which the printer
is referred to in error messages and status informa-
tion. The | separator starts an alias entry and the :

16

Powell & Mason

separator starts an variable entry; entries extend to
the end of line or the next separator character; lead-
ing and trailing in each entry whitespace is ignored.

The LPRng client programs need only the 1pd
server host name and target printer on the server.
This can be specified on the command line using the
‘-Pprinter’ or ‘-Pprinter@host’ option; if
no default is specified in the configuration informa-
tion the local host is the default server host. In Fig-
ure 3a, the simple printcap entry p1 means printer
pl on the default host; entry p2 has has two aliases,
the last of which is really a comment and will be
used when displaying status information.

Server/Client Printcap Database
file: /etc/printcap
clients see pl as remote pr
server use sd tag to get
/usr/spool/LPD/pl/printcap
pl
:cm=Test Printer 1
:sd=/usr/spool/LPD/pl
:1lp=pl@host
second printer,
p2
:8d=/usr/spool/LPD/p2
: tc=common
common information
common :
:1f=1og
ha
:of=/tmp/LPD/psof
:if=/tmp/LPD/psif

H H HH

Printer specific information
used by server,
file: /usr/spool/LPD/pl/printcap
pl
override previous value
:1lp=/dev/ttya
:1f=1log
TW
:of=/tmp/LPD/psof
:if=/tmp/LPD/psif
debug
:db=9, remote=10
autohold
:ah

Figure 3b: Server/Client Printcap Examples

The 1p (line printer) tag specifies the printer
device or host. The form lp=printer@host is
printer on host; the form lp=
printere@ehost%2000 indicates the 1pd server is
available on port 2000. This last form is useful
when running multiple versions of spooler software
and when connecting to speical network based
printers. A file pathname such as 1p
=/dev/ttya specifies a printer device to be used

1995 LISA IX — September 17-22, 1995 — Monterey, CA

Powell & Mason

by the server; the form 1p=host%2000 indicates
port 2000 on host is network based printing device.

More printcap information is needed for the
1pd server, as is shown in Figure 3b. Spool queues
have printcap entries with a sd (spool directory) tag.
The tc tag (recursively) appends a printcap entry to
the end of the referencing entry.

The 1pd server checks to see if a printcap
file is in the spool directory, and will read the
printcap information from this file, overridding exist-
ing information. This allows a single master
printcap database to be used by both clients and
servers; the clients ignore the sd tags and the server
gets printer specific information from the printcap
file in the spool directory.

A major administration problem is the distribu-
tion of printcap information. One solution is to use
a network database such as Sun Microsystems NIS,
HESIOD, Sybase, etc. Rather than build in a
specific database access method the LPRng software
uses the concept of database filters to access the
information. In Figure 2, the configuration
printcap path value |/tmp/LPD/dbserver
specifies using a filter program to get printcap infor-
mation.

The filter program is started by the client or
server process and a string containing the name of
the desired printcap entry is sent to the filter’s
stdin port; the returned printcap information is
read from the filter’s stdout port. By convention,

LPRnNg

a all request returns either all the available
printcap entries, or an all printcap entry whose
all tag contains a list of available printers.

The Sun NIS database can be access by using a
simple shell script and the ypmatch program;
HESIOD, DBII, Sybase, and other databases can be
supported in the same manner.

Job Submission

The lpr client program submits jobs to the
1pd server by simply using a TCP/IP connection
and sending the files to the server. The only infor-
mation the client needs is the printer and hostname,
and can run as a user application.

If the printer output is piped to the 1pxr client,
then RFC1179 allows the output to be directly
copied from the client to the server by using the
lpr -k (for seKure) option. While LPRng sup-
ports this option, many other LPR server implemen-
tations are defective or do not support this capabil-
ity. This is useful when creating large jobs, or there
is are security related problems with creating a tem-
porary file on the client host.

The LPRng clients can run as ordinary user
processes; eliminates any problems with unauthor-
ized access to files, as the client has no permission
except those of the user.

However, for the 1pr client to be compatible
with vintage LPR spooling software (i.e.- SUN

Attribute Match Connect Job Job LPQ LPRM LPC
Spool Print
SERVICE S rX’ 'R 'p’ 'Q’ ‘M’ rc’
USER S JUSR JUSR CUSR CUSR
HOST S RH JH JH RH JH JH
IP IP RIP JIP JIP RIP JIP JIP
PORT N PORT PORT PORT PORT PORT
REMOTEUSER S CUSR CUSR CUSR CUSR
REMOTEHOST S RH RH JH RH RH RH
REMOTEIP IP RIP RIP JIP RIP RIP RIP
PRINTER S PR PR PR CPR CPR
SAMEHOST SH SH
SAMEUSER SU SU
KEY:

CUSR user name in connection
JUSR user name in control file

RH connecting host name
RIP connecting host IP
PORT connection origination port

JH host name in control file

JIP |IP address of JH

SA Same Host
SuU Same user

JIP

== RIP
JUSER == CUSER

Match: S = string with glob wild card, IP = IPaddress[/netmask],

N = low[-high] number range; NOT negates the test status

Figure 4: Permission Attributes

1995 LISA IX — September 17-22, 1995 — Monterey, CA

17

LPRnNg

Microsystems), it must originate a connection from a
privileged port. For this reason, when run as a
SETUID ROOT program, after making a connection
to the the server, the 1pr client uses setuid (2) to
drop the root permissions, and operates as an ordi-
nary user program.

Several of the vintage 1pr options such as the
‘-g’ (use symbolic links) and ‘-r’ options
(remove on printing) are not supported; the symbolic
link option has no effect as files are transferred
directly to the server, and the remove option has
caused more than one user to accidentaly delete the
files that he wanted printed!

Permissions and Authorization Checking

One of the requirements of any printer spooling
system is to deny access to unauthorized users and
to record accounting information for authorized
users. The LPRng software uses a rather elaborate
permissions and authorization mechanism, similar to
the ones used by computer network firewalls.

Since all spooling operations are carried out by
the 1pd server, it is the only process that needs to
perform permissions checks. Permissions are
checked when a connection is made to the server,
and before the server performs and action or pro-
vides information requested by the various client
programs. In addition, the server checks job permis-
sions before it prints a job as well as when the job is
submitted. This allows NFS based printer spooler
software, which copies control and data files directly
to a spool directory, to be used with the LPRng
software. See the Security Considerations section
for a discussion of problems related to allowing this
type of activity.

Each request for service has a set of attributes
and values; a list of these attributes is shown in Fig-
ure 4. Figure 5 shows a sample permissions

Powell & Mason

database. Each line in the database consists of a
match result and a list of attribute names and match
patterns. Permissions checking is done by scanning
the database in order, checking each line for a
match. If all the entries on line match, then the
result is the match result for the line or the current
default. Note that each entry can have several alter-
nate patterns; these patterns are tried in order until a
match is found.

The default permission configuration
variable specifies an initial (default) permission line;
additional permission databases are specified by the
printer perms path configuration variable
When checking permissions for a spool queue with
printcap entry, the xu printcap tag provides an addi-
tional set of databases to be searched. If no match
is found after searching all specified databases then
the last specified default permission will be used.

Attributes are treated as string, integer, or IP
address values. The string patterns are based on the
simple glob patterns of the Bourne and C shells,
and use case insensitive matching with only the =
metacharacter. For example, the pattern A*b will
match Ab, and AthisB. IP address patterns are an
address (ADDR) followed by an optional netmask
(NM) which defaults to 255.255.255.255; the match
succeeds if (using C language notation)
(IP"ADDR) &NM is zero. For example, the pattern
130.191.163.0 / 255.255.255.0 matches all
of the addresses in the 130.191.163.0 subnet
range. Number patters are a low to (optional) high
integer range.

The special pattern char= pattern matches
the char line in the job control file against pattern.
For example, c=a=*,B*, C* will check the C (class)
information line for a string starting with A, B, or C.
The special pattern NULL matches missing or no
information; for example the permissions entry

Permissions Database
Reject connections not in our subnet

REJECT SERVICE=X NOT IP=130.191.0.0/255.255.0.0
Allow root on trusted hosts to have control access
ACCEPT SERVICE=C HOST=hop.sdsu.edu, skip.sdsu.edu \

PORT=721-731 USER=root
REJECT SERVICE=C

do not allow forwarded jobs from anybody but dickory
ALLOW SERVICE=R NOT SAMEHOST HOST=dickory.sdsu.edu

REJECT SERVICE=R NOT SAMEHOST
Allow PC lab to spool to laserwriter

ACCEPT SERVICE=R,P,Q PRINTER=1w4 HOST=*.eng.sdsu.edu

Let them remove jobs if from the same host

ACCEPT SERVICE=M PRINTER=1w4 HOST=*.eng.sdsu.edu SH

REJECT HOST=*eng.sdsu.edu

if no match in other database then you fail

DEFAULT REJECT

Figure 5: Sample Permissions Database

18

1995 LISA IX — September 17-22, 1995 — Monterey, CA

Powell & Mason

ALLOW SERVICE=R,P USER=NULL,* allows
anonymous job spooling and printing.

Spool Queues and Job Files

The main activity of the 1pd server is centered
on managing print jobs in the spool queues. A print
job consists of a control file, containing user and
other information, and data files containing the infor-
mation to be printed. The control file format is
specified by RFC1179; a sample job control file is
shown in Figure 6. Control file names have the for-
mat c£XnnnHOST, where X is a letter, nnn is a 3
digit job number, and HOST is a host identifier.
Data files names have the format dfXnnnHOST,
where X is a letter, and nnn and HOST are identical
to the corresponding control file.

Htaco.sdsu.edu
Ppapowell

J(stdin)

CA

Lpapowell

Qt1
fdfA917taco.sdsu.edu
N (stdin)
UdfA917taco.sdsu.edu

Figure 6: Job Control File

Control file lines starting with an upper case
letter provide information and those starting with
lower case letters specify a format and a data file to
be printed with the format. For example, the P (per-
son) and H (host) lines give the originating user and
host name; the I (indent) and L (banner name) are
used when printing the job.

The LPRng software extends the basic
RFC1179 control file entries by adding z (output
filters options) and Q (original queue). The value of
these options are passed to the filters that format and
print the data files. For example, Figure 3a shows
an example of a printcap entry (p2) with several
aliases. The lpr command lpr -Q -Pdouble
-Zheavy paper will create a control file with the
Qdouble and Zheavy paper entries and sends it
to the p2 printer. The output printing can use the Q
and z entries to select various paper and format
options.

LPD Server Operations

The 1pd server creates queue Server process
for each spool queue, and then waits for connections
from clients. Each time a request arrives the server
will create a new process to handle the requests.
The max_servers_active configuration variable
can be used to limit the number of active servers.
The queue server process uses the printcap entry
information and a set of control files in the spool
directory to control its activities and report its
actions (Figure 1). In the discussion below, printer

1995 LISA IX — September 17-22, 1995 — Monterey, CA

LPRnNg

is stands for the primary printer name; all files are in
the spool directory unless otherwise indicated.

The Server lock file (printer) is used to ensure
that only one server process is active at a time. The
spool control file (control . printer) has the format
shown in Figure 7a, and controls one or more of the
spool queue related activities. Entries in this file
override defaults and values in the printcap database.
Note: the information shown in this file may not be
present at all times.

The control file spooling disabled and
printing disabled entries disable spooling to
the queue and printing from the queue respectively.
The redirect entry causes the server to transfer
all spool jobs to the specified remote printer. When
autohold is enabled, the server will not process a
jobs until it is released by a request from the 1pc
program.

printing disabled 0

spooling disabled 1

debug 10, remote=5, log=/tmp/log
redirect p3@mentor

autohold off

class A,B

Figure 7a: Spool Control File

The class entry restricts the printable jobs to
the specified class. This facility allows special
forms to be mounted on a printer and only jobs
which need them to be printed. The special pattern
char=patterns restricts printing to jobs with a
control file line starting with char which matches
pattern. For example, P=accounting could be
used to restrict printing to jobs from the account -
ing user.

The debug entry is a diagnostic and testing
aid. The set of options are used used by the server
to enable or disable specific testing functions. For
example, 10, remote=5, log= /tmp/log
specifies a general debugging level of 10, setting the
remote flag to 5, and logging to the /tmp/1log file.

The 1pc (line printer control) program is used
to request the 1pd server to change the spool control
file values and take other actions, such as starting or
stopping server processes. The lpc program can
also request (brutal) spool server process termina-
tion, and (gentle) restarting of spooling activities.

The spool server process scans the spool queue,
ordering jobs to be serviced in a first-in, first-out
order within priority classes. Class A is the lowest
(default) priority, and Z is the highest. When a job
is selected for for servicing, the spool server forks a
subserver process to carry out the actual work..

The reason for using a subserver process for
per job servicing is based on experiences with a
variety of UNIX implementations. Some of these
implementations have memory leaks or file

19

LPRnNg

descriptor leaks associated with various database and
networking routines; each time a process uses these
routines they open a new file descriptor or allocate
some temporary storage. Unfortunately, these
descriptors are never closed the descriptors or
reclaim the storage. These defective functions are
firewalled in a subserver process, which only exists
while a particular job is processed. Note that the
same problems exist in the 1pd server, which also
takes care to isolate these actions in a subserver pro-
cess.

When a job is selected for service, the sub-
server process creates a job hold file to record infor-
mation; job cfAo0Olmentor will have hold file
hfA0O0lmentor. The hold file has the format
shown in Figure 7b.

active 2743

hold 1
priority 0x873486
remove 1
redirect p4@mentor

Printer timed out
Figure 7b: Job Hold File

error

The active entry records the process ID of
the subserver process, and indicates that the job is
active. A non-zero hold entry indicates that the job
is being held by administrative actions; a hold value
of O allows a job to be printed. The 1pc hold and
release commands can be used to hold and release
jobs.

The priority field specifies an additional
level of job priority; jobs with non-zero priority
fields are serviced before jobs with O fields; the 1pc
topg command updates the priority value.

The redirect entry supplements the spool
queue redirect information. This entry allows
individual jobs to be moved to another spool queue.
The 1pc move command updates the redirect value.

The remove and error entries are used to
solve a problem with defective or misconfigured
printing software. After a job is serviced its files are
removed from the spool directory. However, some-
times due to accident or intent, the files cannot be
deleted, resulting in the job being endlessly printed
and preventing normal operations. When a job is
serviced, the job hold file is created and written in
the spool directory; if the hold file cannot be
modified the job is not serviced. After the job has
been serviced the remove field is set to a non-zero
value; this prevents the job from being reprinted, and
the error field records any error conditions that
might inhibit retrying servicing the job. This infor-
mation is displayed by the 1pqg (line printer queue)
program. After the job files have been successful
removed, the server then removes the job hold file.

20

Powell & Mason

A bounce queue is used to temporarily hold
jobs until they can be forwarded to a remote printer.
This is useful when sending jobs to a network
printer. The LPRng software lpr and 1pd pro-
grams use the same algorithm to check file permis-
sions and accessibility when sending jobs to a
remote printer.

Printing Algorithm

On the surface, dealing with the printer
hardware should be quite simple: the printer device
is opened, the job data files are sent to the device,
and the printing device is then closed. The actual
algorithm used by the 1pd server for printing a job
is rather complex, in order to deal with the following
problems.

1. Each printer usually has specific requirements for
connection and initialization, not to mention the
actual transmission of data.

2. If the connection to the printer is a serial line,
stty (1) (or a similar function) must set the speed,
format, and other characteristics. When a serial
line is closed and reopened the line characteris-
tics may be reset to some default value, requiring
the line to be held open throughout the printing
process.

3 The effects of the failure printing a job job should
be localized to that job.

4 Different types of output such as raster plots,
PostScript files, text files, etc., may require dif-
ferent handling when printing. This can be very
device specific.

5 Multiple users may use the same printer; jobs
need to be carefully separated, banner pages pro-
vided, and other administrative functions per-
formed.

6 Administrators have a strong desire to record the
printer usage so that users can be billed appropri-
ately.

In order to handle printer specific problems,
each printer has a set of filters or support programs
which provide support for specific operations. For
example the of filter will print banners, page
separators, and other high level queue control func-
tions. Files whose print format is the (lower case)
character ? will be printed using a ?f filter; the
programs corresponding to each format are found in
the printcap file.

The algorithm used by LPRng is shown in Figure 8.
It is similar to the original Berkeley algorithm, but
not identical. Names such as ‘of’ refer to entries
in the printcap database and OF is a filter process
created from the ‘of’ information; OF =
filter('of’) -> LP means create the OF filter
from the of information in the printcap file, and
send it output to the LP filter or device.

1995 LISA IX — September 17-22, 1995 — Monterey, CA

Powell & Mason

LP = open('lp’); // open device
OF = IF = LP; // set defaults
if('of’) OF = filter('of’) -> LP;
// make OF filter
if (accounting at start ’‘as’)
do accounting;
if (leader on open ‘1d’) ‘1ld‘ -> OF;

// send leader
if(FF on open ’'fo’) ‘fo' -> OF;
// send FF

// check to see if banner required
do banner =
(always banner ’ab’
|| (!suppress banner ’sb’

&& control file 'L’));
if (! header last 'hl’ && do banner) {
BP = OF; bnr = null;
if (banner start ‘bs’) bnr = ‘bs’
else i1f(banner program ’'bp’) bnr =
if (bar){
BP = filter(bnr) -> OF;
}
short banner info -> BP;
if(BP != OF) close(BP);

}

// suspend the OF filter
if(OF != LP) suspend OF filter;

for each data file df in job do
// send FF between files of job

Ibpl

if (!first job && ! suppress FF ’'sf’){

if(OF != LP) wake up OF filter;
"ff’ -> OF;
if(OF != LP) suspend OF filter;

// get filter for job
?F = LP; // default - no filter
format = jobformat;
if(jobformat == ’"f’
jobformat = ‘1’){
format = 'f’;

or

}

filter = format filter from printcap;
if (filter) {
?F = filter(filter) -> LP;
// send data file to printer
// through filter
data file -> ?F;
// kill filter
if(?F != LP)
endfor

close(?F)

// finish printing
if(OF != LP) wake up OF filter;
if (header last 'hl’ && do_banner) {

if(! no FF separator ’'sf’)

"ff’ -> OF;
BP = OF; bnr = null;
if (banner end program ’‘be’) bnr =
else if(banner program ’‘bp’) bnr =
if (bnr) {

BP = filter(bnr) -> OF;
}

short banner info -> BP;

1995 LISA IX — September 17-22, 1995 — Monterey, CA

lbel

Ibpl

LPRnNg
if(BP != OF) close(BP);
}
if(£ff on close "fq’) 'ff’ -> OF;
if (trailer on close ’'tr’) tr -> OF;
if (accounting at end ’‘ae’) do accounting;
if(OF != LP) close(OF);
close(LP);

Figure 8: Printing algorithm used by LPRng

While the algorithm used by LPRng resembles
the original Berkeley LPR algorithm, it has subtle
differences. Before the job is printed, it is checked
for the formats it uses. If there is no filter available
for a data file, the job is not printed and only an
error message is generated.

The printing device is opened and closed for
each print job. This eliminates problems of printer
failure when various network and other printers fail
such that they will not work correctly until reset by
a network reconnection or a device open.

The as and ae printcap entries specify a filter
or format to be used to record accounting informa-
tion at the beginning or end of a job respectively.
For example, for a 230 byte long job spooled to
printer p1 by john on pcil the entry as=start
$P 3Su $H s$b will write start pl john pcl
230 to the accounting file. The entry
as=/usr/local/psaccnt start will run the
psaccnt program and wait for it to terminate.
Similar action is taken at the end of a job using the
ae printcap entry.

Each site usually has different needs for banner
printing. LPRng has removed fancy bannner print-
ing from the 1pd server to a separate program. The
bp (banner printer) program generates a banner for a
job; users can modify the banner without modifying
the LPRng software. Banners can be printed at the
beginning and end of jobs.

LPRng can use vintage filters available for LPR
and other spooling systems with a minimum of
changes. The section on Filters discusses how they
are accommodated.

LPRng supports multiple printers serving a sin-
gle print queue. The master print queue has a
sv=serverl, server2, ... (servers) printcap
entry listing the server printer names; server printers
have a corresponding ss=master (serves) printcap
entry. The master spool queue server process
creates a subserver process for each slave printer;
the subserver processes print all jobs in the server
spool queue and then terminate. As each of the sub-
server processes terminates, the master selects a job
from the master spool queue and then creates a new
subserver process. This subserver will copy the job
to the server spool queue and then process the job.
Note that print jobs can be directly spooled to slave
spool queues, allowing users to send jobs to a server
printer as well as to the master spool queue.

21

LPRnNg

Filters

The LPRng software makes heavy use of filter
processes for printing and other operations. A filter
specification has the form

| [ROOT] [-s1 path optionsP

Printcap printer filter entries usually drop the |’
filter indication. Normally, filters run with EUID
and RUID daemon; the ROOT keyword runs EUID
ROOT. See Security Considerations for details.

The path entry specifies the absolute path-
name of an executable file and the options are a
set of options to invoke the filter with. In addition
to the user specified options, the LPRng software
will append the configuration variable
filter options unless suppressed by the -$
flag.

The options are scanned for variable substitu-
tions indicated by ¢ characters. If key has a non-
zero length string value X, then $key expands to -
keyx, $-key expands to X, and sokey to -key X,
i.e., a space separating the key and value. For a
printer filter, if the data file format is binary $c
expands -c. The substitution formats allow the user
to create interfaces to vintage printer filters with a
minimum of effort; see Figure 9 for an example. As
a further aid, The printcap bkf (backwards filter)
flag appends a list of options which are compatible
with most vintage printer filters.

In addition to the command line options filters
have the PRINTCAP, CONTROL FILE, and
DATA FILE environment variables set to the
printcap information, control file contents, and data
file name being printed. This allows filters to use
information in the control file or printcap entries
with a minimum amount of effort.

By convention filters read input from stdin,
write to stdout, and write errors to stderr. The

Powell & Mason

error output is usually directed to the error logging
file for the printer. Print filters have their current
directory set to the printer spool directory.

Security Considerations

Security considerations were a major factor in
the design of the LPRng software. Many of the
problems center on the following issues.

1. Users trying to use the printer spooler software to
exploit bugs in the operating system and gain
root access.

2. Users trying to use the printer spooler software to
gain unauthorized access to other users files,

3. Users trying to gain illegal access to printing
facilities.

4. Users trying to avoid accounting procedures.
5. Denial of service attacks.

The first issue to be dealt with is the problem
of ROOT permissions. All of the client LPRng pro-
grams can run as ordinary users; this eliminates a
large number of attacks on system security by trying
to exploit various defects in the system based on
SUID root programs. The LPD server is the only
program that absolutely needs to run with real UID
(RUID) ROOT as it uses a privileged TCP/IP port to
listen for incoming connections, and in most UNIX
systems bind (2) requires EUID ROOT permissions
to bind to a privileged port. (It is not recommended
that a non-privileged port be used as a trojan horse
user program can bind to it and impersonate the
LPRng software.) According to RFC1179 a connec-
tion to a server must originate from a (privileged)
port in the range 721-731.

Given this need for ROOT permissions, the
LPRng code goes to extreme lengths to ensure that
only the bind (2) calls are made with EUID root, and
that all other operations are done either as daemon
(server) or as wuser (clients). It is strongly

Filter specification:
path argl arg2 $P sw $1 $x Sy
$K $L $c $1i \
$Z $C $J SR\
$0n $0h SF $-a

Expanded Specification
path argl arg2 \
-PPrinter -wpw -1lpl -xpx -ypy \

-Kcontrolfilename -LLogname -iIndent \
-ZZoptions -CClass -JJobinfo -RRaccountname \

-n Person -h Host -Fformat af

Note: pw, pw, etc. are from printcap entries,
Printer, Logname, etc. are from control file lines,

other information generated by server.

Figure 9: Filter Specification and Expansion

22

1995 LISA IX — September 17-22, 1995 — Monterey, CA

Powell & Mason

recommended that the 1pd program not be SUID
root, but should started up by the system initializa-
tion rc (4) scripts or a root user.

It is recommended that all client programs be
run as user (non privileged) jobs. Only files accessi-
ble to the user will be read or transferred to the
server. If a user wants to access a printer that
requires privileged ports, it is a simple matter to
create a bounce queue on a server that will forward
a job to the remote system.

The checkpc (check printcap) program scans
the printcap and permissions databases, spool
queues, and checks permissions of files and direc-
tories. If run by ROOT with the -£ (fix) flag set, it
will try to change ownerships, create files and/or
directories, and remove junk or old job files from
spool queues. This program also has some portabil-
ity tests built into it, and can be used to check that
the target system can safely run the LPRng software.

Most efforts to circumvent accounting and per-
missions checks are based on forging or impersona-
tion of another user or network host. The current
version of the LPRng software depends on the vari-
ous system configuration and database utilities to
provide user authentication and system authentica-
tion. This is clearly inadequate, and a future release
of LPRng will support encryption based authentica-
tion; the KERBEROS and the PGP systems are
under active study for possible use. The method
will be base on using the filter mechanism to invoke
a set of authentication programs rather than directly
incorporating the code into the LPRng software.
This allows a variety of mechanisms to be used.

One of the arguments for running client pro-
grams SUID ROOT is that they are enabled to con-
nect to the server from a privileged port, and the
information provided will be authenticated in some
manner by the operating system. Unfortunately, the
LPRng software uses various network databases to
obtain connecting host information; by attacking the
the system by spoofing database (DNS) server activi-
ties, it is possible to forge authentication.

The use of NFS exported and mounted spool
directories exposes the LPRng software to extreme
attack. One of the assumptions made by most spool-
ing systems is that only the trusted spooling software
or trusted application programs will have write
access to the spool directory; when the directory is
NFS mounted or exported this may no longer be
true. Several spooling systems operate by writing
job control and data files into an NFS mounted spool
directory. By appropriately forging network
identification, credentials, and various RPC calls,
attackers can create or modify unprotected files in
the spooling directory. The ability to read informa-
tion in job or other files may also give them the abil-
ity to launch other forms of attack. One of the more
malicious denial of service attacks is to create a file

1995 LISA IX — September 17-22, 1995 — Monterey, CA

LPRnNg

that cannot be removed or modified; the spooler
software may end up repeatedly attempting to print
the file, blocking other users from using the spool
queue and consuming printer resources.

In order to protect the LPRng software from
NFS spoofing based attacks, the printcap
cd=directory entry specifies a separate control file
directory to be used by 1pd for all spool queue files
except the job and data files. This directory should
not be NFS mounted or exported, and should reside
on the local host file system. This directory should
be carefully created so as to be accessible only by
user daemon. Printcap and other information can be
safely placed in this directory as it cannot be
modified by NFS operations.

Avoiding printing accounting procedures has
long been a tradition at educational institutions;
while minor infringements are usually ignored, per-
sistent and blatant offenses are worrisome. In addi-
tion, once an individual discovers a method then it
apparently is rapidly copied by others, leading to
widespread abuse. One difficulty faced by adminis-
trators is determining the resources used by a job.
As part of the printing algorithm, the LPRng
software provides a set of hooks to allow the invoca-
tion of accounting programs before and after the
actual job is printed. For example, most PostScript
printers have a page count register whose value can
be easily read by a simple Postscript Program. By
reading this before and after a job the total usage
can be calculated.

However, some students have discovered that
by aborting a job in the middle of its printing or by
printing a job that contains information that causes
the printer to hang and not report the total pages
used at the end of a job they can avoid the normal
accounting procedures. By recording information
before as well as after a job completes such incom-
plete jobs can be found.

Filters are a major security loophole, as most
filters are shell scripts and inherit shell script vulner-
abilities. To combat this, the LPRng software
defaults to running all filters either as the user or as
daemon, and provides a predefined and limited set of
environment variables. Some network printer filters
need to open a privileged port and must have root
permissions. This is a serious vulnerability, and the
lp=host%port printer specification has been pro-
vided to ameliorate this problem. It has been recom-
mended that filters run as user nobody, restricting
capabilities to an even greater exent, and this con-
sideration is under study.

Filters which are actually shell scripts are
vulnerable to attacks using metacharacters in option
strings. These are passed as options to the filter, and
are then rexepanded by the shell. For example, a
job spooled by the user named ‘root -rf /°
(note the backquotes) would have interesting results.

23

LPRnNg

The vintage printer filters are particularly vulner-
able to attacks of this type. To combat this, the
LPRng software ruthlessly purges all non-
alphanumberic, whitespace and simple punctuation
(minus, period, slash, and comma) characters from
filter options. The raw option information is avail-
able in the PRINTCAP and CONTROL_FILE
environment variables. Administrators would be
wise to examine shell based printer filters for similar
security loopholes.

Deliberate denial of service attacks are almost
impossible to avoid. However, heavy usage of the
printer system can produce almost the same symp-
toms. For example, when a large number of print
jobs are queued it is possible to exhaust the spool
queue file space. The printcap mx (maximum job
size) entry specifies the maximum job size (in
Kbytes) to be queued and the mi (minimum free
space) entry specifies the minimum free space (in
Kbytes) needed.

Summary and Acknowledgments

The LPRng software continues to evolve as
users find problems and develop new printing
requirements. One of the areas to be pursued is the
use of encryption for end to end authentication of
users and print jobs. Another is adding interfaces to
other network based spooling systems. Finally,
documentation and automated management continues
to be pursued.

The network based interfaces for client pro-
grams almost trivialize development of user specified
GUI systems. PERL scripts and TkI/Tk based front
ends can be developed rapidly and easily.

The development of the PLP and LPRng
software would not have been possible without the
aid and assistance of literally hundreds of users.
The main developer of the software was Patrick
Powell <papowellesdsu.edus>, and Justin
Mason <jmason@iona.ie> generated the PLP4.0
distribution, contributed much of the portability
code, and organized the plp@iona.ie mailing list.
Subscribe by sending email to plp-request
@iona.ie with the word subscribe in the body.
Marty Leisner <leisner@sdsp.mc.xXerox.
com>, Ken Lalonde <ken@cs.toronto.edus,
and Michael Joosten <joost@ori.cadlab.de>
performed invaluable portability testing and debug-
ging of the LPRng Alpha Minus release; they
discovered and provided fixes for literally hundreds
of bugs.

LPRng was based on PLP Release 4.0, to
which the following people (in alphabetical order)
contributed:

Dave Alden <alden@math.ohio-state.edu>
Julian Anderson <jules@comp.vuw.ac.nz>
Jan Barte <yann@uni-paderborn.de>

Baba Z Buehler
Lothar Butsch

<baba@beckman.uiuc.edu>
<but@unibw-hamburg.de>

24

Powell & Mason

David M Clarke
Panos Dimakopoulos
Angus Duggan
Martin Forssen
Michael Haardt
<u31b3hs@POOL.Informatik. RWTH-Aachen.DE>
Eric C Hagberg <hagberg@mail.med.cornell.edu>
Paul Haldane <Paul.Haldane@edinburgh.ac.uk>
George Harrach <ghharrac@ouray.Denver.Colorado.EDU>
Stefano lanigro <w_stef@unibw-hamburg.de>
Helmut Jarausch <jarausch@igpm.igpm.rwth-aachen.de>
Michael Joosten <joost@ori.cadlab.de>
Stuart Kemp <stuart@cs.jcu.edu.au>
Hendrik Klompmaker
<Hendrik.Klompmaker@Beheer.zod.wau.nl>

<dmc900@durras.anu.edu.au>
<dimakop@scti.gr>
<angus@harlequin.co.uk>
<maf@math.chalmers.se>

Rick Martin <rickm@cs.umb.edu>
Todd C. Miller <Todd.Miller@cs.colorado.edu>
Corey Minyard <minyard@wf-rch.cirr.com>
Dorab Patel <dorab@twinsun.com>
Ed Santiago <esm@Ianl.gov>

Bjarne Steinsho
Harlan Stenn
Julian Turnbull
Bertrand Wallrich
Greg Wohletz

<bjarne@hsr.no>
<harlan@landmark.com>
<jst@dcs.edinburgh.ac.uk>
<Bertrand.Wallrich@loria.fr>
<greg@cs.unlv.edu>

Author Information

Patrick Powell <papowell@sdsu.edu> is faculty
in the Dept. of Computer and Electrical Engineering
at San Diego State University, San Diego CA 92182,
where he teaches Computer Networks, Real Time
Systems, and Distributed Computing.

Justin Mason is a sysadmin for IONA, Corp. in
Ireland, where he administers the various UNIX sys-
tems and fixes broken printer software.

References

Pow95. Patrick A. Powell, LPRng — Enanced Printer
Spooler Software Reference Manual, Dept. of
Electrical and Computer Engineering, San
Diego State University, San Diego, CA 92182,
1995. FTP://ftp.iona.ie/pub/LPRng/, FTP://
dickory.sdsu.edu/pub/LPRng/

Cam94. Ralph Campbell, *“4.3BSD Line Printer
Spooler Manual,”” 4.4 Berkeley Software Dis-
tribution, Computer Systems Research Group,
U.C. Berkeley, Berkeley CA, 1994. USENIX
Association and O’Reilly & Associates, Inc.

Pow95a. Patrick A. Powell, “‘PLP — The Public Line
Printer Spooler Reference Manual,”” PLP 4.0

Software Distribution, 1995. FTP://tp.
iona.ie/pub/plp-4.0

McL90. Leo J. McLaughlin Ill, RFC1179 Line
Printer Daemon Protocol, Internet Advisory
Board, 1990.

GNU91. GNU, GNU General Public License, Free
Software Foundation, Inc., 675 Mass. Ave.
Cambridge, MA 02139, 1991.

1995 LISA IX — September 17-22, 1995 — Monterey, CA

