
The following paper was originally presented at the
Ninth System Administration Conference (LISA ’95)

Monterey, California, September 18-22, 1995

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

How to Upgrade 1500 Workstations on Saturday, and
Still Have Time to Mow the Yard on Sunday

Michael E. Shaddock, Michael C. Mitchell, and Helen E. Harrison
SAS Institute Inc.

How to Upgrade 1500 Workstations
on Saturday, and Still Have Time to

Mow the Yard on Sunday
Michael E. Shaddock, Michael C. Mitchell, and Helen E. Harrison – SAS Institute Inc.

ABSTRACT

Imagine: It’s Saturday afternoon. You run a script, watch it for a while, then go home.
When you come back the next day, 1500 workstations and fileservers have new operating
systems installed, complete with all your local customizations, with the user data on each one
undisturbed and without leaving your office. On December 17, 1994, we did just that.

This paper will describe the infrastructure that allows us to perform completely
automated updates of a large distributed network of HP UNIX computers. First, we will
describe the policies we designed for distributed systems administration. Next, we will
describe the tools which we developed or collected to implement these policies, and we will
describe how to put it all together to do an upgrade. Throughout we will explain the
philosophy behind it all and how our particular implementation could be generalized to other
sites. Finally, we will describe some of the lessons learned along the way.

Support Philosophy and Design Goals

In order to support a large number of worksta-
tions and fileservers with a small number of system
administrators, we decided very early in the design
phase of our network to do everything possible to
make all of the machines look the same, but still
allow for per-host tailoring. This goal was helped
considerably by the fact that our network consists of
only Hewlett Packard 9000/700 series workstations
and fileservers.

The second design goal was that we try not to
modify any more system files than necessary. This
would allow us to move from one operating system
version to another without having to track down a
large number of system files that we changed in each
version.

Our basic philosophy is that network services
should be centrally administered, and should be
replicated and distributed. AFS replicated volumes
and BIND, the Berkeley Internet Name Daemon, are
excellent examples of how we wanted to do things.
Each uses a master copy, which is then replicated to
multiple distributed service providers. If any one
service provider becomes unavailable, the service
requesters would automatically shift to another ser-
vice provider. We wanted both our day-to-day sys-
tems and our support infrastructure to follow this
paradigm.

In addition to using replicated distributed ser-
vices, we also try to cause each workstation to use
the service provider which is ‘‘closest’’ to it on the
network. Our network is heavily subnetted, and we
want to reduce inter-subnet traffic and network
latency.

System Design

Our standard system configuration is an HP700
with two internal disks. We named the two internal
disks / and /local. The root disk, /, is virtually ident-
ical on every workstation and fileserver (except for
licensed software differences which are managed by
software distribution tools), and is where the operat-
ing system binaries, such as /bin and /usr/bin, reside.
The /local disk is used for data that is machine
specific. This machine specific data includes user
home directories, backup tables, the workstation’s
AFS cache, and other local configuration files. As a
result of this design we were able to set up a disk
‘‘cloning’’ system. If a workstation loses its system
disk, we are able to replace it quickly and easily. If
a /local disk breaks, we have everything that we
need on the system disk to bring the system up to
the point of being able to restore the necessary data
on /local.

Since almost all of the machine specific data is
located in /local, and since all of the system disks
are virtually identical, the amount of data that we
actually need to back up is greatly reduced. There
are still a few files in / that need to be backed up,
but this number is very small. If a system has more
than the standard two internal disk drives, the addi-
tional drives are typically mounted as subdirectories
of /local. Since our backup software traverses direc-
tory trees in a manner similar to tar (1), mounting a
new disk under /local automatically adds it to our
list of things to be backed up. HP-UX for HP 700
series machines does not support disk partitioning,
so we were limited to using multiple disks in order
to segregate system data from other data, specific to
that machine. One could, however, achieve similar

1995 LISA IX – September 17-22, 1995 – Monterey, CA 59

How to Upgrade 1500 Workstations on Saturday ... Shaddock, Mitchell, & Harrison

results by using physical disk partitioning on other
systems which do support it.

Tools

Hostclasses
Hostclasses are a way of using a symbolic

name to define a set of machines, and to use set
operations upon those sets. They were initially
designed and implemented at MCNC [1]. This initial
implementation read the hostclass information
directly from files in a known location. We have
modified hostclasses to use a client/server approach,
which includes multiple replicated servers, in keep-
ing with our overall philosophy. Hostclasses can be
incorporated into applications either through a user
level program or a set of C library functions.

Hostclasses can be used for myriad applica-
tions. For example, we have one hostclass called
loc.DC. This defines all of our machines in our
main Data Center. We also have a hostclass called
appl.AFS, which lists all of our machines which are
AFS fileservers. The intersection of these two hostc-
lasses,

=loc.DC % =appl.AFS

lists all of the machines in our main Data Center
which are AFS fileservers. One of our most com-
mon uses for hostclasses is to list which machines
have which extra products installed, such as the
ANSI C compiler or Japanese NLIO support. Hostc-
lasses allow for centralized list management
independent of any individual application. A
hostclass is similar to a netgroups (4), except that
hostclasses are designed to be used in a more gen-
eral way.
Sasify

Our primary software configuration manage-
ment tool is called sasify (formerly called
doit). It uses a central database called an action
file, which contains a list of actions to apply to a
host, and applies them. These actions can include
downloading and installing a new kernel, deleting
files, installing patches, etc. There is a file stored on
each machine that defines the current sasify level.
When a system reboots, it performs its normal
startup procedures, then downloads a copy of
sasify from one of a set of known servers, and
runs the downloaded sasify. Sasify checks to
see what the current sasify level is, downloads a
copy of the action file that pertains to the local host,
and performs any actions necessary to update the
system to a new level. There are also ways to
specify actions that should always be run before
and/or after any level-specific actions.

Sasify uses hostclasses to determine which
actions at a specific sasify level are to be run on
which hosts. For example, your first level-specific
action might be ‘‘for all machines that do not run

X.25, download version 9.77 of /hp-ux.’’ Your
second action would probably be ‘‘for all machines
that run X.25, download version 9.77_x25 of /hp-
ux.’’ In the first instance, we would use the hostclass
expression

=sasify.HP700 - =appl.X25

whereas in the second instance we would only need
to specify

=appl.X25

Following our support paradigm, sasify keeps a
single centralized ‘‘database’’ of all of the actions
necessary for all of our HP 700 series machines.
After a new version of the action file is installed, it
is replicated to our sasify database servers. When
sasify downloads a new copy of the action file, it
actually gets it from one of the five database servers.

In addition to the action file being replicated
from a central location, all of the data that sasify
downloads is also replicated from a central location.
Sasify then picks the ‘‘closest’’ of the data repli-
cas. If it cannot reach the data replica that it
prefers, it will randomly pick another of the replicas.

Sasify can be used to maintain multiple
configurations. It uses hostclasses to determine
which configuration a machine should use, so it is
not limited to supporting just one type of machine
architecture. When we were designing sasify,
we knew that we would eventually want to use it to
maintain systems other than our main HP network,
and designed it accordingly. We currently support 4
distinct HP configuration models and are working on
extending sasify database to include the Suns that
we support as well.

Since hostclasses and sasify were
presented at LISA VI in 1992 [2], we will not go
into more detail about their internal workings.

There are a number of additional software
maintenance and distribution solutions that have
been developed at other sites. These include pack-
age [3], depot [4, 5], and config [6], each with a dif-
ferent feature set, which are designed to solve simi-
lar problems. Most of these other packages special-
ized in tracking local software updates. We
designed our package so that it would not only
enable us to download new software versions to our
workstations, but would also provide methods for
adding and deleting files, and for running arbitrary
programs. If you have not already adopted a formal
software distribution system there is a good chance
that you will find one already written which will
meet your needs.
Getticket

Experience has shown that even though we
have replicated most of our services, there are still
times when we want to control exactly how many
systems are accessing a service simultaneously. In

60 1995 LISA IX – September 17-22, 1995 – Monterey, CA

Shaddock, Mitchell, & Harrison How to Upgrade 1500 Workstations on Saturday ...

addition there are occasionally some services which
are inherently difficult to replicate, perhaps because
of licensing restrictions, or which generally receive
only incidental use, but may be accessed more fre-
quently during an upgrade. For example, all of our
extra HP products, such as the ANSI C compiler, are
loaded from a single location and are accessed only
when a system disk is replaced or a product is
installed on a new machine. During a full upgrade,
however, we reload this software on each machine
which is licensed for it. To provide this controlled
access to these services, we wrote getticket and
ticketd. The client program, getticket,
queries ticketd for a ticket to a particular service.
Ticketd knows which hosts provide which service,
and how many tickets are available for that service
on each host. It then hands out tickets to this ser-
vice in a round-robin fashion to distribute the load
between the service providers. The ticket that is
given out has the name of the service provider
embedded in it, so any scripts that we write do not
have to know anything about who the service provid-
ers are, or how many of them there are. Get-
ticket is also used to return tickets to ticketd
once they are no longer needed.

The ticketd program handles the tickets for
multiple services simultaneously. Each service is
defined in a tickettab file. The tickettab
file lists the service name, the ticket lifetime, and the
names of the service provider and a count for that
provider. Each service provider can have a different
number of tickets which it contributes to the pool
of tickets for that service. The tickettab file for
the hpux_patches service might look like:

service hp-ux_patches 14400
milton 8
hasbro 4
tonka 16

This specifies that for the service hp-
ux_patches, all tickets will timeout after 14400
seconds (four hours). There are a total of 28 tickets
in the service pool: 8 from milton, 4 from has-
bro, and 16 from tonka.

The ticketd program builds a ticket out of
the service provider name, an underscore, and an
internally generated number (the seek offset into a
file). A ticket from the hp-ux_patches service
might be "milton_080". The entire string is returned
to the ticketd program so that the service pro-
vider section can be pulled out of the ticket with the
Korn shell syntax "${ticket%_*}", assuming the
ticket is in the variable "$ticket" (and the hostnames
do not contain underscores). The command

echo $ticket | awk -F_ ’{ print $1 }’

is another way to get the service provider part of the
ticket.

While getticket was designed originally to
manage access to services on specific hosts, it can
be used more generally. The service provider field
can be any string. It does not have to be a host-
name. This feature allows the getticket program
to be used as a simple licensing agent. For instance,
suppose you have a 20 user license for the image
viewer xv. The tickettab file might looks like
this:

service xv 1209600
xv 20

You could then use a simple wrapper program that
uses the getticket library routines to get an xv
ticket, runs the real xv program which has been hid-
den away, then returns the ticket. This is a handy
way of complying with licensing restrictions on pro-
grams which do not support license management.
Netdistd, Update, and Filesetload

HP provides two programs with HP-UX that
are used for distributing software across a network.
The first of these, netdistd, is the distribution
server. A netdist area includes software subsets,
which HP refers to as filesets, and patches. The
other program is update, which communicates
with a netdistd to download filesets to the local
machine. Update connects either to a single
default netdist server or an alternate server
specified on the command line. In order to make
HP’s update system fit our support paradigm we
wrote a wrapper program called filesetload.
Filesetload is told which service to use, and
which filesets to load. Filesetload then checks
to see if any of the specified filesets need to be
installed, and if so, it uses getticket to get a
ticket to the specified service, runs update to
download and install the filesets, uses getticket
to return the ticket, and then sends the log from the
update to a mailing list of system administrators.
Since filesetload is run every time a machine
reboots, an unexpected benefit is that whenever a
system disk is replaced any additional licensed pro-
ducts will be automatically reinstalled.
Sortaddrs

During an operating system upgrade, there are
many machines rebooting simultaneously, each
downloading a large amount of data. To prevent
network bottlenecks it is helpful to balance the net-
work load. Sortaddrs was written to address this
problem. Sortaddrs takes a list of hostnames,
sorts them by subnet address, and prints out the
sorted list. The list is sorted so that the first entry is
from subnet A, the second is from subnet B, and so
on, until we cycle back to subnet A.

1995 LISA IX – September 17-22, 1995 – Monterey, CA 61

How to Upgrade 1500 Workstations on Saturday ... Shaddock, Mitchell, & Harrison

Putting It All Together

HP-UX Recovery System

1 /etc/disktab table of disk-drive geometries, used by ’newfs’
131 /etc/fsck make sure the filesystems are OK
164 /etc/init runs the /etc/rc actions
1 /etc/inittab tells /etc/init what to do
16 /etc/newfs initializes the filesystem
119 /etc/mkboot installs the bootstrap program
57 /etc/mkfs makes a new filesystem, called by ’newfs’
20 /etc/mknod makes a ’special’ device
12 /etc/mount mounts a file system
1 /etc/rc startup script
12 /etc/reboot reboots the system
65 /etc/restore restores a dump image
20 /etc/umount unmounts a file system
25 /bin/chmod change the protection modes of a file
20 /bin/chown change the owner of a file
49 /bin/cpio file archiver
16 /bin/date set/display the time
90 /bin/dd changes blocking factor of data
98 /bin/gzip compress/decompress program
16 /bin/ln links two files together
172 /bin/ls get a directory listing
86 /bin/mkdir make a directory
94 /bin/rm removes a file
32 /bin/sed stream editor
262 /bin/sh command interpreter
29 /bin/stty set terminal characteristics
12 /bin/sync updates super-block
70 /lib/dld.sl dynamic loader
856 /lib/libc.sl shared C library
317 /usr/lib/uxboot.700.gz compressed bootstrap program, used by ’mkboot’

Figure 1: Included Programs

HP, like most UNIX vendors, provides tools to
build a memory-resident operating system and
filesystem. They refer to this as a recovery system.
The typical use of a recovery system is to create a
tape to be booted when a system suffers from catas-
trophic failure of its system drives. We have used
these tools to build a custom version of the recovery
system with our support tools installed, which is
only used during an operating system upgrade. Dur-
ing an upgrade of this type sasify installs some
support files in /local, downloads the recovery sys-
tem as /hp-ux, and then reboots. When the system
boots, it is then running our recovery system, which
does not access the internal disks. We then mount
these disks under temporary names, copy any ‘‘pre-
cious’’ data from / to /local, unmount /, newfs the /
disk, download a dump (8) image of the standard
system disk, and restore it as /. Next we copy the
previously saved precious data from /local back to /,
and reboot again. At this point, sasify picks up

where it left off, and continues with any remaining
updates.

Since the recovery system has a limited size,
we had to write smaller versions of some of the
standard system utilities. For example, mount (8)
takes up 180 KB of disk space. Our ‘‘expert
friendly’’ version of mount (8), which does no
significant error checking, but which is sufficient for
our use while running the recovery system, only uses
12 KB. We were able to realize similar savings
with several other programs that we needed on our
recovery system.

Since the HP recovery system uses a memory
resident file system, all of the programs necessary
for the recovery operation (shell, mount,
restore, cpio,...) are contained in the data
segment of the kernel image. We had to choose
very carefully what would go into the recovery
image, because the HP boot ROM would not load a
kernel bigger than about 6 MB. We also wanted the
recovery image to be as useful as possible, so we
included a few things we could have copied to the
/local disk instead of leaving memory resident. We

62 1995 LISA IX – September 17-22, 1995 – Monterey, CA

Shaddock, Mitchell, & Harrison How to Upgrade 1500 Workstations on Saturday ...

pared down the size of executables wherever possi-
ble, by writing our own simplified versions of
reboot and mount, by using gzip to compress
the boot strap loader (uxbootlf.700) installed
on the system disk by mkboot, and by stripping the
symbol table off anything that had a symbol table.
Figure 1 shows a list of all the programs we
included and their sizes, in KB. We could save
some space by including the /etc/unlink pro-
gram instead of rm, but we would also have to write
our own rmdir program. The ls program is an
extravagance; we would like to find something
smaller, but echo * is not as easy to use. We
would also like to include tar, but it weighed in at
200 KB. For our purposes, cpio at 49 KB does
just as well.

The /etc/rc script used by the recovery sys-
tem first tries to mount the /local disk. If that
succeeds, it then executes a shell script placed on
the /local disk (/local/recover/recover) by sasify. If
the mount fails or the shell script is not found, it
prints a message on the console and the shell is
started. This lets us use the same recovery system
for system updates and for emergencies.

We use sasify to load into the /local/recover
directory any programs needed to finish the update.
Currently that includes find, hostname, ifcon-
fig, sum, telnet, and a few others. Find is
used to generate a list of filenames to save before
the update. ifconfig and hostname are used to
set up the networking so that the dump image and
check sum file can be pulled across the network.
Sum is used to verify that no errors occurred in the
transfer of the dump image. telnet is used to send
a last-gasp error message when a failure occurs from
which we cannot recover. We use telnet to con-
nect to the SMTP port of our mail gateway and send
it a hand-crafted SMTP message.
How Many, How Quickly

As previously mentioned, during our testing
phase we can determine how long the update process
takes. We also time how long certain phases of the
update process take. We can use these timings,
along with our knowledge of how many service pro-
viders we have and how many simultaneous connec-
tions the service providers can support, to calculate
how quickly we can reboot the machines. We also
know the total time we want the update to take. If
our reboot rate cannot get all of the machines
updated in the time frame that we want, then we
know we will need to adjust the number of service
providers where possible. For example, lets say that
a workstation takes 30 minutes for a complete
update, we do not want any more than 5 machines
talking to a single update server at the same time,
and we have 10 update servers. Since we have 1500
workstations, that means it will take at least (1500 *
30) / (5 * 10) minutes or 15 hours to complete the
update. The workstations should be rebooted (15 *

60 * 60) / 1500 or 36 seconds apart. This gives an
upper bound for the reboot interval.

In most circumstances we can reboot the
machines much faster. Only a portion of the 30
minutes it takes to update the machine needs to be
rate-limited to 50 machines at once. A fair amount
of time is taken by checking disk consistency,
mounting disks, enabling the network, and other
local processing. The only part that has to be rate-
limited is the section that downloads data from the
sasify and netdist servers. If the average
machine spends only 15 minutes of the 30 minutes
downloading data, we can reboot a machine every 18
seconds instead of only every 36 seconds. The
entire update would take about 8 hours instead of 15
hours.

There is a danger in updating machines this
quickly. Since it takes 30 minutes for one machine
to finish, and machines are updating every 18
seconds, if there is a mistake in the update procedure
(30 * 60) / 18 or 100 machines could be affected
before anyone notices the failure of the first worksta-
tion.
Doing the Upgrade

Since all our workstations run sasify as part
of their normal boot-up processing and since
sasify is doing the updating, all we have to do to
trigger an update is reboot a machine. To facilitate
rebooting 1500 machines we wrote a Korn shell
script that reads a list of hostnames and a time delay
value. It reboots each machine in the list and waits
the specified number of seconds before rebooting the
next machine in the list.

The first version of the script used a passed-in
value as the time delay parameter. We soon realized
that we needed a way to change the delay parameter
while the updates were in progress. If you miscalcu-
late how quickly to reboot machines the servers
could become overloaded with update requests. In
the calculations above we guessed that a server
could handle five connections simultaneously. What
happens if the servers can only handle four connec-
tions? We wanted a knob we could turn to speed up
or slow down the reboots.

We added this knob by having the reboot script
read a file containing the delay time every time it
was going to delay. We now pass in a file name
instead of a delay time. When we start upgrading
the workstations we try to use a larger delay than is
really necessary. We then watch the server load as
the workstations start updating. As the workstations
complete their upgrade successfully we decrease the
time delay in steps, thus rebooting machines more
quickly, until the calculated frequency is reached.
Upgrading Servers

One tricky problem in an automated procedure
of this type is upgrading your upgrade servers. Spe-
cial care is needed while upgrading these servers,

1995 LISA IX – September 17-22, 1995 – Monterey, CA 63

How to Upgrade 1500 Workstations on Saturday ... Shaddock, Mitchell, & Harrison

since some of them also run the various servers
needed for doing the upgrades. We have managed
to segregate the various servers well enough that we
now do our global reboots in waves. First, we
reboot our main netdist server. Then, we reboot
the ‘‘database’’ servers one at a time. The database
servers run named, the various AFS database
processes, the hostclass servers, and the librarian ser-
vices for sasify. Then we reboot half of the
replica servers. These servers act as AFS replica
servers, as netdist servers for HP patches, and as
the download point for sasify data. Next we
reboot the other half of the replica servers. At this
point, all remaining workstations and fileservers can
be rebooted.

Lessons Learned

Replicate, Replicate, Replicate
We discovered that it is important to replicate

as many of your services as possible. This improves
reliability, provides for load balancing, and allows
for improved throughput for large-scale operations
such as software updates.
Cleanly Segregate Functions

Try to segregate different functions on
appropriate servers as much as possible. At one
point, we were running AFS database servers on one
set of machines, named on another set, and
sasify librarian and data servers on a third set. In
this case, trying to determine the reboot order was a
nightmare. We eventually realized that named, the
AFS database servers, and the librarian services all
depended on each other. We relocated them onto
the same set of machines, reducing the complexity
of the problem significantly. Additionally, once we
instituted the AFS replica servers, the reboot
sequence became obvious.
Updating an Update Server

After a reboot, an average system will start its
standard processes, run sasify, and then start its
individual local processes. This means that on the
netdist server machines we need to start any
netdist servers before we start sasify. In addi-
tion, we modified ticketd and sasify to be
smart about picking servers. If machine A asks for a
ticket to a service that machine A provides, tick-
etd returns a ticket for machine A instead of what-
ever ticket was next available in the round robin
queue. We made similar changes to sasify.
Centrally Administer Replicated Services

Central administration of our replicated services
has made it much easier for us to maintain all of the
necessary configurations. While this is not a luxury
that some sites, particularly universities, have, we
should still acknowledge its benefits.

Do Less, More Often
We discovered that it is easier and less risky to

apply a few changes once a month than to apply a
large number of changes a few times a year. This
should be self-evident, but it did take us some time
to realize this. This also allows us to track patches
from HP more closely than we previously could.

Since we run an operation that is expected to
be available 24 hours a day, 7 days a week, our
upper-level management had to be convinced each
time we need to do an upgrade that, overall, it was
worth the downtime. Scheduled downtime only
occurred 2-3 times per year, with many changes
occurring at each of these outages. We were able to
convince our management that the chances of a
major error being made while only making a few
changes was much smaller than if many changes
were being made. We now schedule our downtime
on a highly predictable monthly schedule with
specific dates announced months in advance, This
allows our product developers to schedule releases,
regression tests, etc., without being surprised by
scheduled downtime. In addition, we consolidate
hardware changes to coincide with these scheduled
maintenance times which has reduced the need for
incidental downtime at other times. We are
currently updating 1800 workstations each month.
Testing

When upgrading over 1500 workstations, a
widespread failure can be particularly catastrophic
and take a long time to fix. In this environment
carefully controlled testing is extremely important
before a major upgrade. We have a set of test
machines where we do our initial testing. Once we
are satisfied with these tests, we install the changes
on the workstations of the UNIX support group. This
gives us a chance to ‘‘test drive’’ the changes. Dur-
ing these tests we also time how long it typically
takes to do an update, and use those numbers to help
us determine how quickly machines can be rebooted.
The Time It Almost Didn’t Work

When we first started updating the servers we
had some network hardware problems. The symp-
toms were that the sasify program would hang
without completing the transfer of the system disk
image. We were worried that more network
hardware failures could cause many workstation
updates to fail in such a way that we would have to
walk to them and restart them. We quickly wrote a
program that would fork() and exec() its argu-
ment list and wait a specified number of seconds
before killing its child process. This program was
used to limit the time sasify could be hung. If
sasify failed our script would restart it at the
beginning (up to ten times). This change to fix the
hung session problem was put into place after some
testing.

64 1995 LISA IX – September 17-22, 1995 – Monterey, CA

Shaddock, Mitchell, & Harrison How to Upgrade 1500 Workstations on Saturday ...

We started the workstations while we analyzed
the failures from the hung machines, still trying to
find the original problem even though we had
worked around it. Analysis of the hung machines
suggested some additional changes could help
prevent some of the failures. The new changes were
added while the workstation update was in progress.
There was little or no testing done to the new
changes. (Big Mistake!)

Half an hour latter we started noticing that
workstations were not finishing their update. We
started to look for a reason and found a syntax error
in the new changes. About 100 machines were try-
ing to load the wrong things. We stopped the update
process for the rest of the machines, then tried to
figure out how to fix the 100 ‘broken’ machines.
We came up with a solution that required us to just
restart sasify, tested it on a few machines, then
started to walk to the 100 ‘broken’ machines. Our
use of sortaddr insured that they would be spread
out all over our campus.

When we got to the first machine, we found it
had already restarted sasify. We watched it until
we knew it was running correctly, then we moved on
to the next machine. It too was re-running sasify.
It was then that we realised that the code to limit the
execution time of sasify had kicked in, causing
each machine to start over, this time executing the
corrected code. It saved us from having to walk to
100 machines!

Conclusions

While the implementation that we describe was
done on an HP platform, we believe that many of
the concepts are generalizable to any UNIX platform.
The specific tools that we use to manage this net-
work are only part of the whole picture. You also
need an overall policy which will guide your support
structure development as your network grows. We
have found that a comprehensive strategy, con-
sistently applied across all support solutions, not just
those designed specifically for software updates,
makes performing major software updates highly
efficient, even in a large network.

Availability

For information on the availability of any of
the tools mentioned in the paper, please send email
to heh@unx.sas.com.

Author Information

Helen E. Harrison is the UNIX Support Manager
at SAS Institute Inc., where her group provides
hardware and software support for a network of over
1800 UNIX workstations and servers. She has been
involved in UNIX systems administration for over 12
years and holds a B.S. in Computer Science from
Duke University. Reach Helen at SAS Institute Inc,

SAS Campus Drive, Cary, NC 27513; or by e-mail
at heh@unx.sas.com.

Michael Mitchell is a Systems Programmer in
the UNIX Support Group at SAS Institute Inc. He
has been involved in Distributed Computing for over
8 years and UNIX systems for 15 years. He holds a
B.S. in Computer Science and a B.S. in Electrical
Engineering, both from North Carolina State Univer-
sity. Reach Mike at SAS Institute Inc., SAS
Campus Drive, Cary, NC 27513; or by e-mail at
mcm@unx.sas.com.

Michael Shaddock is a Systems Programmer in
the UNIX Support Group at SAS Institute Inc. He
has been involved in UNIX systems administration for
over 8 years and holds a M.S. in Computer Science
from the University of North Carolina at Chapel
Hill. Reach Mike at SAS Institute Inc., SAS
Campus Drive, Cary, NC 27513; or by e-mail at
shaddock@unx.sas.com.

References

1. Helen E. Harrison, Stephen P. Schaefer, and
Terry S. Yoo, ‘‘Rtools: Tools for Software
Management in a Distributed Computing
Environment,’’ Proceedings of the Summer
USENIX Conference, pp. 85-93, San Francisco,
CA, June, 1988..

2. Mark Fletcher, ‘‘doit: A Network Software
Management Tool,’’ Proceedings of the
USENIX Systems Administration (LISA VI)
Conference, pp. 189-196, October 19-23, 1992.,
Long Beach, CA.

3. Transarc Corporation, ‘‘AFS System
Administrator’s Guide,’’ FS-D200-00.10.4, pp.
14-1 - 14-26, Pittsburgh, PA.

4. Walter C. Wong, ‘‘Local Disk Depot - Custom-
izing the Software Environment,’’ Proceedings
of the USENIX Systems Administration (LISA
VII) Conference, pp. 51-55, Monterey, Califor-
nia, November 1-5, 1993.

5. Wallace Colyer and Walter Wong, ‘‘Depot: A
Tool for Managing Software Environments,’’
Proceedings of the USENIX Systems Adminis-
tration (LISA VI) Conference, pp. 151-159,
October 19-23, 1992., Long Beach, CA.

6. John P. Rouillard and Richard B. Martin,
‘‘Config: A Mechanism for Installing and
Tracking System Configurations,’’ Proceedings
of the USENIX Systems Administration (LISA
VIII) Conference, pp. 9-17, September 19-23,
1994., San Diego, CA.

1995 LISA IX – September 17-22, 1995 – Monterey, CA 65

66 1995 LISA IX – September 17-22, 1995 – Monterey, CA

