How to Design Reliable Servers using Fault Tolerant Micro-Kernel
Mechanisms

Michel Bandtres Pack Hengo Gilles Muller» Bruno Rochat

+ IRISA/INRIA
¢ BULL Research
IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

e-mail : frm@irisa fr

Abstract

The purpose of the Fault Tolerant Multiprocessor (FTM) project is to design a fault tolerant
machine based on Stable Transactional Memories (STM). The FTM operating system is built from
a MACH/OSF kemel which is extended to provide reliable services.

The purpose of this paper is to describe the basic mechanisms that we have added to the MACH
micro-kemel in order to achieve fault tolerance.

1 Introduction

The Fault Tolerant Multiprocessor FTM [3] is a general purpose fault tolerant machine based on
the association of Stable Transactional Memory (STM) boards with standard open multiprocessor
machines. The STM is a fast stable storage device providing atomic memory accesses with low
time overhead compared to normal RAMs. The FTM architecture can tolerate any single hardware
fault.

Unlike STRATUS [8] and TANDEM 82 [9] architectures which mask hardware faults using
static redundancy, the FTM architecture is based on dynamic redundancy, e.g. all the processors are
performing different jobs in normal operating mode. In the event of a failure, the task of the faulty
processor is handled by a backup one in addition to its own jobs. Thus the operating system has to
deal with hardware faults and mask them from the users.

Our goal in the FTM operating system is to help the design of reliable services which mask
hardware faults from its clients. A reliable service is composed of one or more reliable servers; each
reliable server is implemented by storing its variables in STM and by other fault tolerant mecha-
nisms that we propose to add to the MACH 3.0 micro-kemel [1].

The following is structured as follows. In section 2, we present the FTM architecture along with
the STM functionalities. In section 3, we describe the basic mechanisms that we have added to the
MACH kemel to support reliable servers. In section 4, we give an example of a reliable server run-
ning on the extended micro-kernel. We conclude in section 5.

2 The FTM Architecture

The FTM architecture can be seen as a virtual loosely-coupled multiprocessor, in which the pro-
cessing element is the stable node. The FTM architecture ensures the following three properties:

This research was supported in part by the DRET under the grant n® 90346.

USENIX Association Mach Symposium 223

1.The architecture tolerates any single hardware fault.
2.A stable node can restore a safe state of data after an internal failure and is able to resume com-
putations.

3.The interconnection medium ensures that communication is always possible between two sta-
ble nodes and that no partition even occurs.

2.1 The Stable Node

A stable node Sa» (see Figure 1) is built from a primary processor Pq, a backup processor Ps and
a Stable Transactional Memory STMa». The processor Pa can manipulate locally the stable variables
in STMa» with a fast access time. In normal operating mode, the STMa» is not shared between Pa and
Pp,
Stable node ab

Main access
port
Processor Pa [—.

STM

»
CITIIITTY >

P CSSOerE.-.--.-.'
= Recovery

n-n."-.---f- access port

’ll

Figure 1. The stable node

The STMas is able to detect Pa processor failures using a watch-dog mechanism. When the
STMab detects the failure of P, it restores a consistent state of the stable data and warns Ps. P» then
resumes aborted computations from the stable data stored in STMas. After a manual maintenance on
the faulty processor Pa, it is restarted in the stable node Sa». The STMas disconnects the backup pro-
cessor Py and reconnects the primary processor Pa. The computations resume on Pa. If both
processors Pa and Ps fail, the computations running on the stable node Sas are stopped but can be
restarted as soon as one the processor Pa or Ps restarts.

Stable nodes are physically paired in such a way that the primary processor of one stable node
is the backup processor of the other stable node (see Figure 2). Thus, there is no backup processor
dedicated to fault tolerance in the FTM architecture (dynamic redundancy).

The physical FTM architecture is based on open multiprocessor machines. Its complete and
detailed description, particularly of the interconnection medium, can be found in [3].

2.2 The Stable Transactional Memory

The STM provides two notions: the stable object and the transaction. A stable object is a con-
tiguous set of memory words and a transaction is an atomic set of basic operations performed on the
stable objects. All STM operations can only be performed within transactions. Objects of any size
from kemnel lists of few words elements to virtual memory pages of several Kilobytes can be man-
aged atomically.

224 Mach Symposium USENIX Association

—_—
Main access
Proe.uorl’n
H Pair of stable nodes
r......., E ———
=MP§ p---.-'
: Recovery Processor Paj
Psuss uessl ACCess port :
—_— _> :i
-_ H
Stable node ba :
-
.I..I-I-I Rm\'ﬂy §
Processor Pa ...--..n ; i

|

Main access

Figure 2. The pair of stable nodes

The STM is internally implemented using two banks of 32 Megabytes of battery-backup RAM
memory and an intelligent controller which implements transactions using a two phase commit pro-
tocol.

2.2.1 Stable Objects and Protection

For performance purposes, the STM is directly accessed in the physical address space of a pro-
cessor as a local memory. Generally, processors are not fail-stop: a faulty processor may thus
corrupt accessible memory. To protect the STM, stable objects have to be made visible using an
explicit open operation, before being modified by the processor. Similarly, after modification the
object have to be closed using a close operation. Any access to a non opened or non existent object
is detected and rejected by the STM.

The processing of an STM access violation by the micro-kemel depends on the level of the
faulty software. If the fault comes from the kemnel or a well tested server, we assume that there is
some hardware malfunction and the processor is halted. If the fault comes from an application soft-
ware or a server currently being tested, the faulty program is aborted.

2.2.2 The Transaction Facility

The transaction is the most important functionality of the STM. It allows the programming of
complex atomic functions. The operations on transactions are Begin, Commit, Abort. When a trans-
action is committed (resp. aborted), all effects on stable objects are validated (resp. invalidated).

Several transactions can be used concurrently at any time. Thus a transaction is identified by a
descriptor stored itself in the STM. The creation of a new transaction descriptor is performed atom-
ically within another transaction and is distinct from its activation (Begin). When the STM detects
a processor failure, it automatically aborts active transactions.

USENIX Association Mach Symposium 225

3 Basic Fault-Tolerant Mechanisms of the Micro-Kernel

3.1 Overview of the MACH Kernel

Recent evolution in the design of operating systems has advanced the notion of micro-kernel. A
micro-kernel offers a minimal set of concepts allowing the implementation of complex distributed
systems and applications in a modular way. MACH [1] and CHORUS [12] are examples of well
known micro-kernels.

There are five basic entities in MACH: task, thread, port, message and memory object. A task is
an allocation context of resources: it possesses a logical address space and access rights to ports or
memory objects.

A thread is the execution unit and is attached to some task which defines its execution environ-
ment. Several threads can be created within the same task and share the same resources. In
particular, they share the same address space and can communicate directly by shared memory.

A port is the communication resource and allows different threads to exchange messages. Sev-
eral tasks can possess the send right to a port, but only one has the receive right. Rights can be
transmitted by messages but only under the control of the kernel. Ports also permit to identify any
MACH object.

A memory object must be mapped into a task’s address space before being accessed by a thread.
If a memory access raises a page fault, the kemnel sends a message to the memory object port noti-
fying it of the fault. The page fault can be treated by an external server (pager) which owns the page
and sends it back to the kemel.

The five MACH basic entities allow to implement servers. A server is a task which performs a
cyclic job. It receives requests from clients, treats them and returns results. Requests can be served
by one or several threads. Clients are identified by their sending port and the server by its receipt

port.

3.2 The FTM Fault Tolerant Micro-Kernel

The FTM micro-kemel extends MACH by adding mechanisms which allow the implementation
of fault-tolerance. Normal MACH entities, as tasks, ports, memory objects, can be corrupted by a
processor failure. To restore a safe system state, the solution is to create stable equivalent MACH
entities. The FTM micro-kemel provides the standard MACH entities and in addition three other
ones: stable task, stable port and stable memory object. All these stable entities are created and
modified within STM transactions. Transactions are executed by threads and ensure consistency of
stable entities in case of a processor failure.

3.2.1 The Stable Task

A stable task defines an execution environment which is associated with a stable node. As with
anormal task, a stable task contains access rights and a logical address space. Each time a processor
switch occurs, the environment is restored on the active processor by the FTM micro-kernel. Then
a thread is restarted from the entry point of the task.

226 Mach Symposium USENIX Association

3.2.2 The Stable Memory Object

A stable memory object can be viewed as a logical STM. It has the same functionalities as the
physical STM described in 2.2. A stable memory object is mapped into a stable task and is private
to this task. Thus, threads can activate transactions, create and modify stable objects.

The FTM micro-kernel manages the sharing of the physical STM between the different stable
memory objects. In particular, it performs STM page allocation and deallocation.
3.2.3 The Stable Port

A stable port is used to perform reliable communications between two threads. Like any of the
operation defined on stable entities, operations on stable ports are performed within transactions.
That means that sending or receiving messages is effective only at the transaction commitment.

T1. Begin (;
pl.send (m) T2.Begin ();
T1.Commit () -
)&» pl.receive (m);

T2.Commit ();

Figure 3. Message exchange between two tasks

For instance, in Figure 3, the message m is only sent when T/ commits. Similarly, if 72 aborts,
the message is put back in the receipt queue of p1.

Stable ports are implemented in the micro-kernel, using lists of messages which are stored in
STM. A reliable network message server is used when threads are located on different stable nodes.
One of its functions is to locate the active processor of the destination stable node.

3.3 The FTM Reliable Server

A reliable server masks hardware faults from its clients and is implemented using a stable task.
In the event of a processor failure, the stable task is restored on the active processor of the stable
node and a thread is restarted on the entry point. Each server operation is executed atomically
within an STM transaction. If the server fails, the message is put back in the port and the modified
stable objects are restored to their original state. Thus, the atomicity property in the treatment of
each remote procedure call ensures that the server does not lose any client message and executes
exactly once each call.

As anormal RAM memory, the STM is shared between reliable servers. Its 32 Megabyte capac-
ity satisfies all system needs. User applications, which are designed for the FTM, may also have
access to STM. However, to support non fault tolerant applications, we have designed a reliable dis-
tributed virtual memory server [2] which allows to run transparently users programs. This server
integrates in a uniform view all physical memories of the system (RAM, STM and disks).

USENIX Association Mach Symposium 227

4 Programming Example

4.1 Programming with the STM

A C++ interface of the STM has been designed to help the programming of applications. Two
classes, Transaction and Stable are defined in this interface and mask the STM hardware to the C++
programmer. Moreover, the interface allows the definition of a C++ stable object simply by inher-
itance of the Stable class [11]. A similar inheritance mechanism is also proposed in Arjuna [6] and

Avalon [5].
The C++ STM interface is defined as follows:

class Stable {

public:
operator new (long s); /* Creation of new stable object of size s */
operator delete (void *pt); /* Destruction of the object pointed by pt */
void Open (); /* Open the stable object */
void Close (); /* Close the stable object */

};

class Transaction {

public:
operator new (long s); /* Creation of a new transaction descriptor */
operator delete (void *pt); /* Destruction of the transaction descriptor */
void Begin (); /* Activation of the transaction */
void Commit (); /* Commit the transaction */
void Abort (); /* Abort the transaction */

|
To illustrate programming using the STM, we treat the example of stable segment management
in a virtual memory. We first define a Segment class independently of the STM mechanisms. To
allow all stable segments to be allocated in the STM, the Segment class inherits from the Stable
class. We present in the following example a simple segment class with two operations which read
and write a page (the page has a fixed size of 1 Kilo bytes).

const int page_size = 1024;

typedef char[page_size] Page; /* page type */
class Segment : public Stable {

const int segment_size = 10*page_size; /* 10 K bytes */

char S[segment_size]; /* the segment is implemented by an array of characters */
public:

void read_page (int no_page, Page& page); /* read a page */

{ int offset = (no_page*page_size)%segment_size; /* offset in the segment */
for (i=0; i<page_size; i++) pageli] = S[i+offset];
}
void write_page(int no_page, Page page) /* write a page */
{ int offset = (no_page*page_size)%segment_size; /* offset in the segment ¥/
for (i=0; i<page_size; i++) S[i+offset]=pageli];
)
IH
As shown on the previous example, the programmer of a stable class does not need to know the
STM mechanisms. On the contrary, the user of a stable segment has to manage explicitly transaction

and object visibility. This is shown in the following example:

Transaction T; /* wransaction which manipulates a stable segment */
Segment *s; /* pointer to a stable segment */
Page page; /* avolatile page */

228 Mach Symposium USENIX Association

/* atomic creation of the stable segment */
T.Begin (); s = new Segment (); T.Commit ();

T.Begin (); /* atomic move of page 0 to page 1*/

s->Open ();
s->read_page (0, page);
s->write_page (1, page);
s->Close ();
T.Commit ();

4.2 Example of a Reliable Server

We are now extend the previous example by designing a reliable server which offers in its inter-
face, the read_page and write_page operations on a segment. The clients call these operations by

remote procedure call.
A request message sent by a client to the server contains:
» the receiver stable port to which the message is sent,
- the sender stable port from which a result is eventually waited for,
» the type of the request (READ_PAGE, WRITE_PAGE, RESULT),
« the page number of the page which is read or written.

The client which calls a remote operation atomically sends a message to the server stable port
and atomically waits for a result. The following example describes the remote procedure call to

write_page (0, page):

typedef unsigned int StablePort; [*stable port identifier */
enum Request_t {READ_PAGE, WRITE_PAGE, RESULT};
struct {

StablePort receiver_port;

StablePort sender_port;

Resquest_t request;

int page_number;

Page page;
} Message;
Transaction TClient; J* transaction of the client */
StablePort client_port; /* stable port of the client */
Page page; /* the page to write */
TClient.Begin (); /* Atomic send of the write_page request */

server_port.send (

Message client_message=(server_port, client_port, WRITE_PAGE, 0, page));

TClient.Commit ();

TClient.Begin (); /* atomic wait for a result */
client_port.receive (Message result_message);

TClient.Commit ();

As a message is only sent at the commitment of the transaction. It is necessary that Tclient com-
mits between the send and receive operations. Otherwise the client would be indefinitely blocked

on the receive operation.

In the treatment of a client request, the server atomically receives the message sent by the client,

performs the operation on the stable segment and sends back the result.

Transaction TServer; /* transaction of the server*/
StablePort server_port; /* stable port of the server */
Segment s; [* stable segment */

USENIX Association Mach Symposium

229

main()

{ /* infinite loop */

while (TRUE) {
Message client_message; /* message received from a client */
Page result_page = ""; /* result page */
/* Atomic transaction : receive a message, treats an operation, sends a result */
TServer.Begin ();

server_port.receive (client_message);
switch (client_message.request) {
case WRITE_PAGE:

s.0pen ();
s.write_page (client_message.page_number, client_message.page);
s.Close ();
break;
case READ_PAGE:

5.0pen ();

s.read_page (client_message.page_number, result_page);
s.Close ();

break;

}

client_message.sender_port.send (Message message_result =
{client_message.sender_port, server_port, RESULT,
client_message.page_number, result_page});
TServer.Commit();
}
}

5 Discussion

Using atomic actions to build robust distributed programs has been extensively investigated in
ARGUS [10] and CAMELOT [7]. FTM contributes to this work by providing an efficient imple-
mentation of atomic actions on small data objects (arrays, lists). Thus, transactions can be used
within the design of kernel and system services. Generally the implementation of remote operations
only offers the semantics at most once. Using stable ports, we can offer the exactly once semantics.

As mentioned in this paper, the failure of a reliable server is transparent to the clients. However,
if the client fails, its effects on the server are not undone. The coordination between client and
server needs other mechanisms as distributed atomic actions. We are now working on the imple-
mentation of atomic action which are dynamically determined using communication between
clients and servers.

The STM boards are currently under development. Consequently we are prototyping the FTM
micro-kernel using a SUN 3 version of MACH 3.0 and a C++ emulation of the STM. In parallel, we
are also porting MACH 3.0 on to the Motorola 68030 based processors of the FTM.

References

[11 M. Accetta and R. Baron and W. Bolosky and D. Golub and R. Rashid. A New Kernel Foundation for
UNIX Development. USENIX 86, July 1986.

[2] M. Banatre, G. Muller, B. Rochat, P. Sanchez. A Reliable Distributed Virtual Memory on top of the
Mach kernel. OSF Micro Kernel Applications Workshop, Grenoble, France, November 1990.

[3] M. Banitre, G. Muller, B. Rochat, and P. Sanchez. Design Decisions for the FTM : A General Purpose
Fault Tolerant Machine. In Proc. of 21th International Symposium on Fault-Tolerant Computing

230 Mach Symposium USENIX Association

[4]

(51

[6]

(71

(8]

(9]

(10]

[11]

Systems, pages 71-78, Montréal, Canada, June 1991.

D. L. Detlefs, M. P. Herlihy, and J. M. Wing. Inheritance of Synchronization and Recovery Properties
in Avalon/C++. IEEE Computer, pages 57-69, December 1988.

G.N. Dixon and S.K. Shrivastava. Exploiting Type Inheritance Facilities to Implement Recoverability
in Object Based Systems. In Proc. of the 6th Symposium on Reliability in Distributed Software and
Database Systems, pages 107-114, Williamsburg, March 1987.

J. L. Eppinger and A. Z. Spector. A Camelot Perspective. UNIX REVIEW, 7(1):58, 1989.

E. S. Harrison and E. Schmitt. The Structure of SYSTEM/88, a Fault-Tolerant Computer. IBM Systems
Journal, 26(3):293-318, 1987.

D. Jewett. Integrity S2: A Fault-Tolerant Unix Platform. In Proc. of 21th International Symposium on
Fault-Tolerant Computing Systems, pages 512-519, Montréal, Canada, June 1991.

B. Liskov and R. Scheifler. Guardians and actions: Linguistic Support for Robust, Distributed
Programs. ACM Transactions on Programming Languages and Systems, 5(3):381-404, July 1983.

G. Muller, B. Rochat, and P. Sanchez. A Stable Transactional Memory for Building Robust Object
Oriented Programs. In EuroMicro 91, Viennes, Autriche, September 1991. to appear.

M. Rozier, V. Abrossimov, F, Armand, I. Boule, M. Gien, M. Guillemont, F. Herrmann, P. Léonard, S.
Langlois, and W. Neuhauser. The Chorus Distributed Operating System. Computing Systems, 1(4),
1988.

USENIX Association Mach Symposium

231

