
A Systems Architecture for Ubiquitous Video

Neil J. McCurdy and William G. Griswold
Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093-0114
{nemccurd,wgg}@cs.ucsd.edu

Abstract

Realityflythrough is a telepresence/tele-reality system
that works in the dynamic, uncalibrated environments
typically associated with ubiquitous computing. By
harnessing networked mobile video cameras, it allows
a user to remotely and immersively explore a phys-
ical space. RealityFlythrough creates the illusion of
complete live camera coverage in a physical environ-
ment. This paper describes the architecture of Reali-
tyFlythrough, and evaluates it along three dimensions:
(1) its support of the abstractions for infinite camera cov-
erage, (2) its scalability, and (3) its robustness to chang-
ing user requirements.

1 Introduction
Ubiquitous computing is often described as computers
fading into the woodwork [18]. Ubiquitous video, then,
is cameras fading into the woodwork, a notion captured
by the expression, “the walls have eyes.” Ubiquitous
video is characterized by wireless networked video cam-
eras located in every conceivable environment. The data
is transmitted either to a central server or simply into the
ether for all to view. Although many believe that such an
environment is inevitable [2], we do not have to wait for
the future to take advantage of ubiquitous video. There
are a number of scenarios that could benefit from having
live, situated access to ubiquitous video streams using
today’s technology.

Consider, for example, scenarios where it would be
useful to attach head-mounted cameras to personnel en-
tering dangerous, restricted, or remote sites. The video
feeds can be streamed to a control “room” where com-
manders can navigate through the remote environment
using the information acquired from the cameras. There
are numerous such scenarios: In a disaster response set-
ting, the failure to achieve adequate situational aware-
ness can have catastrophic outcomes [13]. Live video
situated in the disaster scene may be of benefit. Police
Special Weapons and Tactics (SWAT) teams [6] that are
routinely involved in high risk tactical situations may de-
rive a similar benefit from live video. Other examples
are: Hazardous Materials (HazMat) teams securing and

decontaminating dangerous sites, police monitoring of
events that attract large numbers of people such as hol-
iday celebrations or protest marches, security personnel
monitoring a remote site, and scientists studying a re-
mote environment—one as benign as a nursery school
or as dangerous as a volcano.

The common thread through this class of applications
is that the harsh conditions of the real world need to be
accomodated, and live, real-time access to the video is
a requirement. Also, true, though, is that the accuracy
of the data is far more critical than aesthetics. To help
identify the minimum requirements of this class of ap-
plications, we will use a SWAT scenario as a specific
example throughout this paper.

The key to harnessing ubiquitous video is in man-
aging the incoming video streams. A naive approach
would display the video on an array of monitors simi-
lar to those used in many building security systems to-
day. An ideal solution would have infinite cameras in
the field, and allow the user to move seamlessly through
the environment choosing any desired vantage point. A
more practical solution provides the illusion of the ideal
system while operating under the constraints imposed by
the real environment, including the constraint that the re-
sulting displays should not be misleading.

We have created RealityFlythrough [11, 12], a sys-
tem that uses video feeds obtained from mobile ubiq-
uitous cameras to present the illusion of an environ-
ment that has infinite camera coverage. Stitching the
multiple video streams together into a single scene is
a straightforwardly sensible abstraction of numerous
video streams. With such an abstraction, the user need
only understand one integrated scene, as in a video
game, rather than multiple feeds, as in a building secu-
rity system. However, the limited number of cameras as
well as the untamed elements of ubiquitous video make
such an abstraction non-trivial to construct.

The key limitation of ubiquitous video is the incom-
plete coverage of the live video streams–every square
meter of a space cannot be viewed from every angle with
a live video stream at any chosen moment. For two cam-
eras pointing in two rather different directions, when the
user switches from viewing one camera to another, it

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 1

Figure 1: Snapshots of a transition. The transition uses two “filler” images to provide additional contextual information. During
this transition the viewpoint moves roughly 20 meters to the right of the starting image and rotates 135 degrees to the right.

is often not obvious how the subject matter in the two
views relate to each other, nor is it obvious what is in the
intervening space between the two cameras.

To address this limitation, RealityFlythrough fills the
intervening space between two cameras with older im-
agery (captured from the live camera feeds), and pro-
vides segues (i.e., transitions) between the two live cam-
eras that sequences and blends the imagery in a way that
provides the sensation of a human performing a walk-
ing camera pan. In certain scenarios the display of older
imagery may be undesirable. While not ideal, transi-
tions without background imagery are still sensible be-
cause the motion and timing of the transition and a back-
ground floor grid convey the distance and angle traveled.
The user has complete control over how older imagery is
displayed—whether it is displayed at all, in a sepia tone,
or with an age-indicator-bar.

The key untamed element of ubiquitous video is the
imprecision of the sensed location and orientation of a
camera (due to both sensor latency and sensor inaccu-
racy). Such imprecision gives misleading cues to the
user about how the subject matter seen in one camera re-
lates to the subject matter in another. For example, the
images might appear farther apart than they really are.

Under certain assumptions, offline vision techniques
could perform seamless stitching [15]. To achieve real-
time flythrough, this problem is instead handled by tak-
ing advantage of a property of the human visual system
called closure [10]. Closure describes the brain’s abil-
ity to fill in gaps when given incomplete information.
It is a constant in our lives; closure, for example, con-
ceals from us the blind spots that are present in all of our
eyes. RealityFlythrough embraces closure by present-
ing the user with an approximate model of the relation-
ships between two camera views, and having the user’s
visual cortex infer the relationships between the objects
in the views. Dynamic transitions between still-images
and live video feeds reveal the misregistrations in over-
lapping images (with an alpha blend), rather than hiding
them through blending or clipping. Although this sac-
rificies aesthetics, the benefits obtained due to closure
increase sensibility. For this technique to work, images
must overlap. This property is sought by the mechanism

that captures the older still-images for filling.

The contributions of this paper are the RealityFly-
through architecture, and its evaluation along three di-
mensions: (1) its support for the desired abstractions for
ubiquitous video, (2) its scalability, and (3) its robust-
ness to changing user requirements that is the measure
of every good architecture.

The emphasis is on the architectural components that
support the abstraction of infinite camera coverage. As
will be shown throughout the paper, the architecture
greatly reduces the complexity of the system, replacing
complicated algorithms with concepts as simple as fit-
ness functions. The design of a large-scale system that
can accomodate thousands of cameras across multiple
locations is considered in Section 7.3, but is not the fo-
cus of this paper. In many scenarios (most disaster re-
sponse and SWAT scenarios), the size of the site and the
availability of network bandwidth will limit the number
of cameras that can be deployed. The architecture, as
described, can easily handle these situations.

The architecture has two unique qualities. First, it
uniformly represents all image sources and outputs as
Cameras, supporting a rich yet simple set of operations
over those elements in achieving the desired abstrac-
tions. And, second, it employs a separate Transition
Planner to translate the user’s navigation commands into
a sensible sequence of camera transitions and accompa-
nying image blends. Our experiments show good sup-
port for the desired abstractions, as well as excellent
scalability in the number of live video sources and Cam-
eras. Support for evolution is explored through a series
of changes to the application.

The paper is organized as follows. Section 2 describes
the user experience, and Section 3 compares our sys-
tem to related work. Section 4 outlines the require-
ments of the system. We present a high level architec-
tural overview of the system in Section 5, and then drill
into the RealityFlythrough engine in Section 6 to reveal
how the illusion of infinite cameras is achieved. Sec-
tions 7.1 and 7.2 evaluate the architecture’s support of
the system requirements, and Section 7.3 evaluates the
architecture’s tolerance to change and support for future
enhancements. Section 8 concludes the paper.

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association2

2 User Experience
A significant part of the user experience in RealityFly-
through is dynamic and does not translate well to the
written word or still-photographs. We encourage the
reader to watch a short video [11] that presents an earlier
version of RealityFlythrough, but we do our best to con-
vey the subtlety of the experience in this section. When
observing the images in Fig. 1, keep in mind that the
transformation between the images is occurring within
about one second, and the transitional frames represent
only about 1/10th of the transition sequence.

The user’s display is typically filled with either an
image or a video stream taken directly from a cam-
era. When the user is “hitchhiking” on a camera in this
way, the experience is similar to watching a home-video
where the camera operator is walking around while film-
ing. A still-image, then, is simply the home-video
paused. When a new vantage point is desired, a short
transition sequence is displayed that helps the user cor-
relate objects in the source image stream with objects
in the destination image stream. These transitions are
shown in a first person view and provide the users with
the sensation that they are walking from one location
to another. The illusion is imperfect, but the result is
sensible and natural enough that it provides the neces-
sary contextual information without requiring much con-
scious thought from the users.

Figure 2: An illustration of how the virtual cameras project
their images onto a wall.

RealityFlythrough works by situating 2d images in
3d space. Because the position and orientation of ev-
ery camera is known, a representation of the camera can
be placed at the corresponding position and orientation
in virtual space. The camera’s image is then projected
onto a virtual wall (see Fig. 2). When the user is look-
ing at the image of a particular camera, the user’s po-
sition and direction of view in virtual space is identical
to the position and direction of the camera. As a result,
the entire screen is filled with the image. Referring to
Fig. 1, a transition between camera A (the left-most im-
age) and camera B (the right-most image) is achieved
by smoothly moving the user’s position and view from
camera A to camera B while still projecting their images
in perspective onto the corresponding virtual walls. By

using OpenGL’s standard perspective projection matrix
to render the images during the transition, the rendered
view situates the images with respect to each other and
the viewer’s position in the environment. Overlapping
portions of the images are blended using an alpha-blend.
By the end of the transition, the user’s position and di-
rection of view are the same as camera B’s, and camera
B’s image fills the screen. As shown in Fig. 1, additional
images are displayed (if available and if desired) to help
provide contextual information.

It may be easier to understand how RealityFlythrough
works by envisioning the following concrete example.
Imagine standing in an empty room that has a different
photograph projected onto each of its walls. Each im-
age covers an entire wall. The four photographs are of a
360 degree landscape with one photo taken every 90 de-
grees. Position yourself in the center of the room looking
squarely at one of the walls. As you slowly rotate to the
left your gaze will shift from one wall to the other. The
first image will appear to slide off to your right, and the
second image will move in from the left. Distortions and
object misalignment will occur at the seam between the
photos, but it will be clear that a rotation to the left oc-
curred, and the images will be similar enough that sense
can be made of the transition. RealityFlythrough oper-
ates in a much more forgiving environment: the virtual
walls are not necessarily at right angles, and they do not
all have to be the same distance away from the viewer.

RealityFlythrough works in the wild because there is
little information the system requires about each cam-
era, and no preprocessing is required to render the tran-
sitions. The position of the camera can be obtained
from whatever locationing technology is desired (we use
WAAS-enabled consumer GPS’s for outdoor tests), and
the tilt, roll, and yaw can be determined with a tilt sen-
sor that has a magnetic compass (we use an AOSI EZ-
Compass). Since the human visual cortex is responsible
for finding correlations between images the primary re-
quirement for positional accuracy is that there be suffi-
cient image overlap. We have found that an accuracy of
6-9 meters is adequate in outdoor settings where there
is a wide field of view. Much higher accuracy would be
necessary indoors—room-level accuracy, at minimum.
Orientation accuracy is much more important because a
camera that has less than a 40 degree field of view (typi-
cal of most web cameras) cannot be off by many degrees
before images do not overlap at all. Magnetic compasses
have provided good results, but may have trouble in ar-
eas of high magnetism.

3 Related Work
There have been several approaches to telepresence with
each operating under a different set of assumptions.
Telepresence [8], tele-existence [16], tele-reality [7, 15],

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 3

virtual reality and tele-immersion [9] are all terms that
describe similar concepts but have nuanced differences
in meaning. Telepresence and tele-existence both gen-
erally describe a remote existence facilitated by some
form of robotic device or vehicle. There is typically
only one such device per user. Tele-reality constructs
a model by analyzing the images acquired from multi-
ple cameras, and attempts to synthesize photo-realistic
novel views from locations that are not covered by those
cameras. Virtual Reality is a term used to describe inter-
action with virtual objects. First-person-shooter games
represent the most common form of virtual reality. Tele-
immersion describes the ideal virtual reality experience;
in its current form users are immersed in a CAVE [3]
with head and hand tracking devices.

RealityFlythrough contains elements of both tele-
reality and telepresence. It is like telepresence in that
the primary view is through a real video camera, and it is
like tele-reality in that it combines multiple video feeds
to construct a more complete view of the environment.
RealityFlythrough is unlike telepresence in that the cam-
eras are likely attached to people instead of robots, there
are many more cameras, and the location and orienta-
tion of the cameras is not as easily controlled. It is un-
like tele-reality in that the primary focus is not to create
photo-realistic novel views, but to help users to internal-
ize the spatial relationships between the views that are
available.

All of this work (including RealityFlythrough) is dif-
ferentiated by the assumptions that are made and the
problems being solved. Telepresence assumes an envi-
ronment where robots can maneuver, and has a specific
benefit in environments that would typically be unreach-
able by humans (Mars, for example). Tele-reality as-
sumes high density camera coverage, a lot of time to
process the images, and extremely precise calibration of
the equipment. The result is photorealism that is good
enough for movie special effects (“The Matrix Revolu-
tions” made ample use of this technology). An alter-
native tele-reality approach assumes a-priori acquisition
of a model of the space [14], with the benefit of generat-
ing near photo-realistic live texturing of static structures.
And finally, RealityFlythrough assumes mobile ubiqui-
tous cameras of varying quality in an everyday environ-
ment. The resulting system supports such domains as
SWAT team command and control support.

4 Requirements
In earlier work [12], we built a proof-of-concept sys-
tem that revealed a number of rich requirements for
harnessing ubiquitous video. Ubiquitous video is chal-
lenging because the cameras are everywhere, or at a
minimum can go anywhere. They are inside, outside,
carried by people, attached to cars, on city streets,

and in parks. Ubiquity moves cameras from the quiet
simplicity of the laboratory to the harsh reality of the
wild. The wild is dynamic—with people and objects
constantly on the move, and with uncontrolled light-
ing conditions; it is uncalibrated—with the locations
of objects and cameras imprecisely measured; and it is
variable—with video stream quality, and location accu-
racy varying by equipment being used, and the quantity
of video streams varying by location and wireless cover-
age. Static surveillance-style cameras may be available,
but it is more likely that cameras will be carried by peo-
ple. Mobile cameras that tilt and sway with their opera-
tors present their own unique challenges. Not only may
the position of the camera be inaccurately measured, but
sampling latency can lead to additional errors.

Our proof of concept system revealed the need for bet-
ter image quality, higher frame rates, greater sensor ac-
curacy with faster update rates, and better support for the
dynamic nature of ubiquitous video.

We used a SWAT team scenario as a concrete example
to help us tease out the requirements of applications that
may benefit from RealityFlythrough. At a typical SWAT
scene, the team commander is situated some distance
from the incident site, and often must direct field op-
erations without the aid of visuals. Commands must be
issued to field officers from their point of view, straining
the commander’s conceptual model of the scene. Mis-
takes do happen [6]. Discussions and initial trials with
the San Diego Metropolitan Strike Team (MMST) with
whom we are collaborating as a part of a larger project
called WIISARD (Wireless Internet Information Sys-
tem for Medical Response) have confirmed that video
may be an effective means for providing early situational
awarenes. We can expect to have 25 officers, and there-
fore 25 cameras, in the field.

Common knowledge about police operations com-
bined with the previous description reveal minimum re-
quirements for a system that could support SWAT: The
system must work at novel sites with minimal configu-
ration; the command center must be nearby and fairly
mobile; cameras should be mobile and therefore wire-
less; the system needs to handle very incomplete camera
coverage with fewer than 25 cameras in the field; and
the system must work in unforgiving environments with
intermittent network connectivity.

5 System Overview
Given the requirements just outlined, how might such a
system be built? First we need some cameras and loca-
tion sensors. We need to capture the image data from a
camera and compress it, and we also need to capture the
sensor data. We call the components that do this, Im-
age Capture and Sensor Capture, respectively. The data
then needs to be combined so that we can match the sen-

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association4

Figure 3: Component diagram showing system overview.

sor data to the appropriate frame in the image data. We
call the component that handles this: Stream Combine.
The resulting stream then needs to be sent across the net-
work to a machine that decodes the data and presents
it to the user. We have a modified MCU (Multipoint
Control Unit) that does the decoding, and a RealityFly-
through Engine that combines the streams and presents
the data to the user in a meaningful way. (Fig. 3 shows
the relationships between these components.)

All of the video transmission components are based
on the OpenH323 (http://www.openh323.org)
implementation of the H323 video conferencing stan-
dard. Video can be transmitted using any H323 client
without modification, but the sensor data would need to
be transmitted separately and recombined on the server
side. For our early prototype, though, we chose to embed
the sensor data into the video stream to reduce complex-
ity and to minimize network traffic. We mention this
only because stand-alone video conferencing units that
do hardware video compression are already starting to
emerge, and it was a key design decision to follow stan-
dards so that we could support third party components.

RealityFlythrough is written in C++ and makes heavy
use of OpenGL for 3D graphics rendering, and the boost
library (http://boost.org) for portable thread
constructs and smart pointers. A projection library
(http://remotesensing.org/proj) is used to
convert latitude/longitude coordinates to planar NAD83
coordinates, and the Spatial Index Library (http://
www.cs.ucr.edu/˜marioh/spatialindex) is
used for its implementation of the R-Tree datastruc-
ture [5] that stores camera locations. RealityFlythrough
is designed to be portable and is confirmed to work on
both Windows and Linux.

The Engine is roughly 16,000 lines of code (including
comments), and the MCU is an additional 2600 lines of
code written on top of OpenH323.

Figure 4: Component diagram showing an overview of
the RealityFlythrough engine. Unlabeled arrows represent
“calls” relationships. The dotted line is an event callback.

6 Engine Architecture
The RealityFlythrough Engine is the heart of the sys-
tem. Given the available video streams and the user’s
intentions as input, the engine is responsible for decid-
ing which images to display at any point in time, and for
displaying them in the correct perspective. Fig. 4 shows
the functional components of the engine. The standard
Model-View-Controller design pattern [4] is used to rep-
resent and display the current system state. The Still Im-
age Generator is responsible for producing and manag-
ing the still-images that are generated from the live cam-
era feeds. These still-images are used to backfill transi-
tions, but may also be worth viewing in their own right
since they may not be much older than the live feeds.
The Transition Planner/Executer is responsible for de-
termining the path that will be taken to the desired des-
tination, and for choosing the images that will be dis-
played along that path. The Transition Executer part of
the duo actually moves the user along the chosen path.
And finally, the Camera Repository acts as the store for
all known cameras. It maintains a spatial index of the
cameras to support fast querying of cameras.

6.1 Model-View-Controller
The objects that comprise the Model-View-Controller
support the abstraction of infinite camera coverage. The
key element of our abstraction is a virtual camera (Fig. 5)
which is simply a location, an orientation, a field of view,
and a list of the “best” cameras that fill the field of view.
The notion of “best” will be explored in Section 6.3, but
for now simply think of it as the camera that most closely
matches the user’s wishes. A virtual camera, then, can
be composed of multiple cameras, including additional
virtual cameras. This recursive definition allows for ar-
bitrary complexity in how the view is rendered, while
maintaining the simplicity suggested by the abstraction:
cameras with an infinite range of view exist at every con-
ceivable location and orientation.

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 5

Figure 5: Class diagram showing the relationship of classes
that are directly related to the Model in the MVC design pat-
tern. For all class diagrams, open arrows represent inheri-
tance, and arrows with diamonds represent containment. Open
diamonds indicate that the container has only a reference to
the object, while filled-in diamonds indicate ownership.

Model. The concept of a virtual camera is extended all
the way down to the Environment State (Fig. 5) which
is the actual model class of the Model-View-Controller.
The user’s current state is always using the abstraction
of a Virtual Camera even if the user is hitchhiking on
a Physical Camera. In that particular case the Virtual
Camera happens to have the exact position, orientation,
and field of view of a Physical Camera, and hence the
physical camera is selected as the “best” camera repre-
senting the view. The current state of the system, then,
is represented by a Virtual Camera, and therefore by a
position, an orientation, and the physical cameras that
comprise the view. Changing the state is simply a matter
of changing one of these three data points.

Figure 6: Class diagram for the classes involved in the View
relationship of the MVC. The “Gl” in class names indicates
that the classes are OpenGL-specific.

View The Model-View-Controller design pattern nat-
urally supports multiple views into the system state.

There are currently two views (Fig. 6), but we envision
more (see Section 7.3). The two views are the First Per-
son View and the Birdseye View. The First Person View
is the primary view that displays the images from a first
person immersive perspective. This is the view that was
described in Section 2. The Birdseye View shows a top-
down perspective on the scene, with cameras rendered as
arrows and the field of view of active cameras displayed
as cones emanating from the arrows (Fig. 7).

Figure 7: The birdseye view. The arrows represent the camera
locations and directions of view.

The Birdseye View not only provides a wide-area map
view of the scene, but also reveals some of the raw-
ness of ubiquitous video that is being abstracted away
by the First Person View. The birdseye view makes the
live camera coverage (or lack thereof) obvious and it re-
veals the ages and density of the still-images that are
used for backfill (see Section 6.2). There are currently
three display modes available in the birdseye view: (1)
show all cameras, (2) show only the cameras that have
been updated within some user specifiable interval, and
(3) show only the live cameras. In an ideal environment,
the user could ignore the information presented in the
birdseye view because a live image would be present at
every vantage point. A more typical scenario, and the
one we adopted in the experiment described in Section 7,
presents the user with the birdseye view that shows only
the locations of the live cameras. The assumption, then,
is that the intervening space is fully populated with still-
imagery. In this mode, the illusion of infinite camera
coverage is still present, but the user is given some extra
insight into where live camera coverage is available.

Each view instantiates one or more renderers to actu-
ally render the cameras that are involved in the current
state. Since the definition of a Virtual Camera is recur-
sive, there may be multiple cameras that need to be ren-
dered. Each of these cameras has a state associated with
it: the opacity (intensity) at which the camera’s image

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association6

should be drawn for the alpha blend. There are currently
two types of renderers: Virtual Wall Renderer and Bird-
seye Renderer.

The Virtual Wall Renderer is used by the First Person
View. It renders images using the virtual wall approxi-
mation described in Section 2. The images are rendered
in a specific order, on the appropriate virtual walls, and
with the opacity specified in their state. The animation of
a transition is achieved by moving the user’s view point
a set distance for each frame and progressing the alpha-
blend for the overlapping portions of all of the images.

The Birdseye Renderer simply draws either the cam-
era arrow or the frustum cone depending on the current
state of the camera.

Controller The controller is a typical MVC controller
and does not require further comment.

6.2 Still Image Generation

Key to the success of the infinite camera abstraction is
the presence of sufficient cameras. If no imagery is
available at a particular location, no amount of trickery
can produce an image. To handle this problem, we take
snapshots of the live video feeds and generate additional
physical cameras from these. A Physical Camera con-
sists of an Image Source and a Position Source (Fig. 5).
The Image Source is a class responsible for connecting
to an image source and caching the images. The Posi-
tion Source, similarly, is responsible for connecting to a
position source and caching the position. A camera that
represents still-images, then, is simply a camera that has
a static image source and a static position source. This
is contrasted with live cameras that have a Video Image
Source that continually updates the images to reflect the
video feed that is being transmitted, and a Dynamic Po-
sition Source that is continually updated to reflect the
current position and orientation of the camera.

To keep the still-imagery as fresh as possible, the im-
ages are updated whenever a camera pans over a similar
location. Rather than just update the Image Source of an
existing camera, we have chosen to destroy the existing
camera and create a new one. This makes it possible to
do a transitional blend between the old image and the
newer image, without requiring additional programming
logic. The images fit neatly into our Camera abstraction.
We do not currently maintain a history of all still-images
at a particular location, but it could be very useful to be
able to move through time as well as space. We are mov-
ing to support this by saving video streams and allowing
PVR-style (Personal Video Recorder) time-shifting.

The use of still-imagery to help achieve the abstrac-
tion of infinite camera coverage is of course imprecise.
There are two ways that the limits of the abstractions are
disclosed to the user:

First, the user has the option to never see older images.
The user’s preferences are used in the “best camera” cal-
culation, and if no camera meets the criteria, the virtual
camera will simply show a virtual floor grid.

Second, older images look different. The user can
choose to have the old images displayed in a sepia tone,
and can also choose whether or not to display an age-
indicator-bar at the bottom of the sepia-toned or true-
color images. The sepia tone makes it absolutely clear
that the image is old, but it has the disadvantage that it al-
ters the image, contradicting our aim to not mask reality.
It is quite possible that this kind of image manipulation
can hide information crucial to the user. An alternative
is to show the age-indicator-bar on true-color images.
The bar is bi-modal, giving the user high resolution age
information for a short interval (we currently use 60 sec-
onds), and lower resolution age information for a longer
interval (currently 30 minutes). With a quick glance at
the bottom of the screen, it is very easy for the user to
get a sense of the age of an image.

Figure 8: Class diagram showing the relationship of the
classes involved in transition planning.

6.3 Transition Planner/Executer

When the user changes views, the Transition Planner
(Fig. 8) is responsible for determining the path through
space that will be taken and the images that will be
shown along this path. The Transition Executer is re-
sponsible for moving the user along the chosen path.
There is a high degree of coupling between the plan-
ner and the executer because of the dynamic nature of
ubiquitous video. Consider a typical case where the
user wishes to move to a live camera. A naive approach
would determine the location and orientation of the live
camera, compute the optimal trajectory to get to the tar-
get location and orientation, determine the images to be
shown along the path, and finally execute the plan that
was just developed.

This approach does not work in a ubiquitous video
environment for several reasons. The primary problem

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 7

is that the destination camera may change its position
and likely its orientation in the interval between when
the plan was computed and when the execution of the
plan has completed. The result will be a plan that takes
the user to the wrong destination. Another problem is
that the images that are selected along the path may not
be the optimal ones. This is because the cameras that
provide the intervening imagery may be live cameras as
well, in which case their locations and orientations may
have changed in the time since the plan was created. The
result is that a live image that could have been shown
is missed, or perhaps worse, a live image is shown that
can no longer be seen from the current vantage point, so
instead no image is displayed. Another possibility is that
the dynamically generated still-imagery is updated after
the plan is generated, but the older image is displayed
instead.

To account for all of these problems the transition
planning needs to be done dynamically and interleaved
with the execution. There are a number of competing is-
sues that need to be balanced when doing dynamic plan-
ning. It would seem that the ideal is to construct a plan at
every time step, but some parts of the planning process
are computationally expensive and need to be done spar-
ingly. Also, the user needs to be given time to process
the imagery that is being displayed, so even if a better
image is available, showing it immediately may actually
reduce comprehension.

The solution is to first introduce a dynamic Path ob-
ject that takes a Position Source rather than a Position as
its destination. The destination is now a moving target.
At every time step, the Path can be queried to determine
the current trajectory. With this trajectory, the Transi-
tion Planner can look ahead some interval and determine
the best image to display. This image (camera, really)
is added to the end of the camera queue. Each Virtual
Camera—and since the Transition Planner acts on the
Environment State remember that the Environment State
is a virtual camera—maintains a fixed-length queue of
cameras. When the queue is filled and a new camera
is added, the camera at the front of the queue (the old-
est or least relevant camera) is popped off the queue and
thus removed from the Virtual Camera. The new camera
that is added has a time-based opacity which means that
the opacity gradually increases with time. We currently
have the image blend to full opacity in one second.

This approach results in what appears to be a transi-
tion from one image to another, but along a dynamically
changing path and with images that were used earlier
still being displayed (if in view) to provide additional
contextual information. The piece of the puzzle that is
still missing is how the plan is constructed and adjusted
dynamically. The Transition Executer (Fig. 8) is respon-
sible for querying the Path at every time step and moving

the user along the desired trajectory. It is also responsi-
ble for notifying the Transition Planner at time inter-
vals set by the planner. These notification events give
the planner the opportunity to determine which image
(if any) to display next. Time is being used for signaling
instead of “destination reached” because having the Path
be dynamic means the destination may never be reached.
Time is an adequate approximation of this signal point.

To determine the images to show during a transition
the Transition Planner applies a series of Fitness Func-
tors to each camera in the neighborhood. The Fitness
Functors are weighted based on user preference. Some
of the fitness dimensions are: proximity (how close is
the camera to the specified position), rotation and pitch
(how well do the orientations match), screen fill (how
much of the screen would be filled with the image if it
were displayed), recency (how recently was the image
acquired), and liveness (is the camera live or not).

To further increase the sensibility of transitions, three
heuristics are used to decide which images to display:
(1) The current image should stay in view for as long
as possible, (2) once the to image can be seen from the
current position, no other images should be displayed,
and (3) there should be a minimum duration for sub-
transitions to avoid jumpiness. The first two items are
handled by always applying the Fitness Functors to the
current camera and the ultimate target camera regard-
less of whether they pass the “in the neighborhood test”,
and then boosting the fitnesses by a configurable scalar
value. This has the effect of giving extra weight to the
current and target cameras, thus indirectly satisfying our
heuristics. The third item is handled by adjusting the
time interval used for Transition Planner callbacks.

6.4 Camera Repository
The CameraRepository is simply a container for all of
the cameras (including the still-cameras) that are known
to the system. To support efficient spatial querying of
the cameras, an R-Tree [5] is used to store the camera
locations. The exact locations of the live cameras are
not stored in the index because this would cause con-
tinuous updates to the index, and such precision is not
necessary when doing “get cameras in neighborhood”
queries. Instead, only location updates that are greater
than a configurable threshold result in a replacement in
the spatial index.

Each physical camera has certain fixed memory costs.
To minimize the use of limited OpenGL resources, the
cameras share a pool of texture maps. We have to store
the image somewhere, though, so each camera (Image
Source, really) allocates 768KB to store a 512x512 im-
age (the size is dictated by OpenGL’s texture map size
requirements) at a depth of 24bits. After a period of in-
activity, the Image Source frees memory by storing the

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association8

image to disk. Under normal loads, there is no percep-
tible difference in performance when an image is read
from disk.

7 Evaluation
An architecture must be evaluated along two dimen-
sions: does it work, and will it work in the future? In this
section we first present a formative user study that cap-
tures the essence of the user experience and helps show
that the abstractions presented are compelling and use-
ful. Second, we examine performance to get insight into
the scaleability of the system. Third, to evaluate how
well the architecture will accommodate future changes
to the application, we examine its robustness against a
set of significant changes and extensions.

7.1 Effectiveness of the Abstraction
An earlier paper on RealityFlythrough [12] suggested
that the first-person perspective used in transitions gen-
erated a sense of “being there”. We re-ran this exper-
iment using our new architecture which was designed
to better handle the dynamic nature of a ubiquitous en-
vironment. Unlike the first experiment where the still-
images were painstakingly pre-inserted, this run made
full use of the automatic still-image capture described in
Section 6.2. This user study and the one described in
the earlier paper were formative studies designed to pro-
vide evidence that RealityFlythrough research is headed
in the right direction.

To determine how the system was perceived by users,
we repeated the earlier experiment as closely as possible.
We used the same subjects, the same equipment on the
user end, and the same location for the flythrough.

There were three hand-carried camera units in the
field. They consisted of a standard logitech web cam-
era (� $100), a WAAS-enabled Garmin eTrex GPS
(� $125), a tilt sensor manufactured by AOSI (� $600),
and an 802.11b equipped laptop. The tilt sensor provides
compass, tilt, and roll readings at � 15hz. The video
streams were transmitted using the OpenH323 video
conferencing standard at CIF (352x288) resolution.

The subjects’ task was to remotely explore our cam-
pus food court with the goal of getting a sense of what is
happening, and to determine if there is anything to draw
them to the site for lunch. The experiment was run twice
because some problems with the system were encoun-
tered on the first run. We discuss this first experiment
because the problems are revealing.

The first run of the new experiment was very positive
from a technical standpoint. Three video streams con-
nected successfully, and a large number of still-images
were automatically generated, quickly filling the en-
tire region with cameras. Only 61 pre-configured still-
images were used in the earlier version of the experi-

ment, but 100’s were generated in this one, greatly in-
creasing the camera density. Despite the extra overhead
incurred by auto-generating the images and by planning
transitions on the fly, the system performance felt about
the same. In fact, the subjects made the statement that
the “performance was definitely much nicer.” The new
H263 video codec proved to be far superior to the H261
codec used previously. The frame rate varied by scene
complexity, but appeared to average about 6-8 frames
per second. The frame size was the same as was used
previously, but the image quality was better and the col-
ors were much more vivid. The generated still-images
were clear and of good quality. On several occasions the
subjects rapidly pointed out the age of images, indicat-
ing the success of the age indicator bar.

Even with all of these improvements, though, the sub-
jects were not left with a positive impression and had
to conclude that “from a usability standpoint, it went
down.” Transition sequences were met with comments
like “it seems like it’s awkward to move through several
of those stills”, and “[that] transition wasn’t smooth.”
Post-experiment analysis identified three sources for the
problems: (1) Too many images were being presented to
the user, not allowing time for one transition to be pro-
cessed mentally before another one was started. (2) The
attempt to acquire a moving target resulted in an erratic
path to the destination, causing disorientation. And, (3)
no attempt was made to filter the location data by sensor
accuracy. Still-images were being generated even when
the GPS accuracy was very low, so transitions involved
nonsensical images which detracted from scene compre-
hension.

Fortunately, none of these problems were difficult to
handle. In Section 7.3 we will discuss the actual mod-
ifications made because these unplanned changes exem-
plify the architecture’s robustness to changing require-
ments.

The experiment was repeated with much more posi-
tive results. Despite worse conditions at the experiment
venue (we shared the space with a well attended Hal-
loween costume contest), the subjects had much more
positive comments such as, “Let’s try one in the com-
pletely opposite direction. That was pretty nice.”, and
“It’s pretty accurate where it’s placing the images.”
“That was kind of cool. They weren’t quite all in the
same line, but I knew and felt like I was going in the
right direction.”

The costume contest placed some restrictions on
where the camera operators could go, forced them to be
in constant motion, and resulted in a lot of close-range
video footage of people’s backs (the cameras were being
held at chest level). The constant motion may be typical
with head-mounted cameras, and should be adressed se-
riously. The subjects found the constant motion to be

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 9

annoying (“they’re all over the map”), and the motion
placed quite a strain on the new algorithm used to home
in on a moving target. The subjects actually preferred
the calmness of the still-images. Midway through the
experiment, we asked the operators to slow down a bit,
and the experience improved dramatically: “Yeah, that’s
what it is. So long as [the camera operators’] rotation is
smooth and slow, you can catch up to it and have smooth
transitions.”

We have since experimented with ways to reduce the
amount of motion that is experienced during transitions.
The fact that our subjects preferred the calmness of the
still-images is revealing. There were simply too many
sources of movement in our transitions, making them
difficult to comprehend and aesthetically unappealing.
When we move through the real world we only have to
take into account 6 dimensions of movement—our own
movement in three dimensions and the movement of the
objects we are viewing in three dimensions. During a
transition involving a moving camera, however, the cam-
era is moving independently and so represents another
three dimensions that have to be processed. Each addi-
tional moving camera being displayed adds three more
dimensions. There is simply too much movement to pro-
cess. The solution we have adopted involves pausing the
live video streams whenever they come into view during
a transition, and playing them back at increased speed
once they have been acquired. This approach will be
described in more detail in Section 7.3.

7.2 System Performance
By measuring the performance of the system we hope
to provide some insight into the scalability of the archi-
tecture. Raw performance metrics mainly measure the
speed of the hardware and the quality of the compiler.
Seeing how the raw numbers vary under certain condi-
tions, however, reveals important details about the archi-
tecture.

The experiments with RealityFlythrough described
thus far have only been run using at most three video
streams. To determine the maximum number of simul-
taneous streams that can be handled by the server, we
ran some simulations. The capacity of the wireless net-
work forms the real limit, but since network bandwidth
will continue to increase, it is instructive to determine
the capacity of the server. We should estimate the ca-
pacity of a single 802.11b access point to give us a sense
of scale, however. For the image size and quality used in
the user studies, the H263 codec produces data at a rel-
atively constant 200Kbps. Empirical study of 802.11b
throughput has shown that 6.205Mbps is the maximum
that can be expected for applications [17]. This same
study shows that the total throughput drops drastically
as more nodes are added to the system. With more

than eight nodes, total throughput decreases to roughly
2Mbps. This reduction means we cannot expect to have
more than 10 streams supported by a single 802.11b ac-
cess point.

We will see that the bottleneck on the server is the
CPU. As more compressed video streams are added to
the system, more processor time is required to decode
them. Some of the other functional elements in Reali-
tyFlythrough are affected by the quantity of all cameras
(including stills), but the experimental results show that
it is the decoding of live streams that places a hard limit
on the number of live cameras that can be supported.

The machine used for this study was a Dell Precision
450N, with a 3.06Ghz Xeon processor, 512MB of RAM,
and a 128MB nVidia QuadroFX 1000 graphics card. It
was running Windows XP Professional SP2. The video
streams used in the simulation were real streams that
included embedded sensor data. The same stream was
used for all connections, but the location data was ad-
justed for each one to make the camera paths unique. Be-
cause the locations were adjusted, still-image generation
would mimic real circumstances. No image process-
ing is performed by the engine, so replicating the same
stream is acceptable for this study. The image streams
were transmitted to the server across a 1 Gbit ethernet
connection. Since the image stream was already com-
pressed, very little CPU was required on the transmitting
end. A 1 Gbit network can support more than 5000 si-
multaneous streams, far more than the server would be
able to handle. Network bandwidth was not a concern.

To obtain a baseline for the number of streams that
could be decoded by the server, we decoupled the MCU
from the engine. In the resulting system, the streams
were decoded but nothing was done with them. With
this system, we found that each stream roughly equated
to one percent of CPU utilization. 100 streams used just
under 100 percent of the cpu. The addition of the 113th
stream caused intermittent packet loss, with packet loss
increasing dramatically as more streams were added.
The loss of packets confirmed our expectation that the
socket buffers would overflow under load.

Having confirmed that the addition of live cameras
had a real impact on CPU utilization, we added the Re-
alityFlythrough engine back to the system. We did not,
however, add in the still-image generation logic. To de-
termine the load on the system we looked at both the
CPU utilization and the system frame rate as new con-
nections were made. The system frame rate is indepen-
dent of the frame rates of the individual video feeds;
it is the frame rate of the transitions. It is desirable to
maintain a constant system frame rate because it is used
in conjunction with the speed of travel to give the user
a consistent feel for how long it takes to move a cer-
tain distance. As with regular video, it is desirable to

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association10

have a higher frame rate so that motion appears smooth.
To maintain a constant frame rate, the system sleeps for
an interval between frames. It is important to have this
idle time because other work (such as decoding video
streams) needs to be done as well.

Conn � CPU (%) � Fps achieved
10 85 15
15 95 14
20 100 10

Table 1: Observed behaviour when running the system at a
system frame frate of 15fps. This table shows that the maximum
number of simultaneous video streams that can be supported
by our test hardware is 15. Adding more connections maxes
out the CPU, making the system less responsive, and reducing
the system frame rate.

For this experiment, we set the frame rate at 15fps, a
rate that delivers relatively smooth transitions and gives
the CPU ample time to do other required processing.
As Table 1 indicates, fifteen simultaneous video feeds
is about the maximum the system can handle. The av-
erage frame rate dips to 14fps at this point, but the CPU
utilization is not yet at 100 percent. This means that oc-
casionally the load causes the frame rate to be a little
behind, but in general it is keeping up. Jumping to 20
simultaneous connections pins the CPU at 100 percent,
and causes the frame rate to drop down to 10fps. Once
the CPU is at 100 percent, performance feels slower to
the user. It takes longer for the system to respond to
commands, and there is a noticeable pause during the
transitions each time the path plan is re-computed.

To evaluate the cost of increasing the number of cam-
eras, still-image generation was turned on when the
system load was reduced to the 15 connection sweet
spot. Recall that still-images are generated in a sepa-
rate thread, and there is a fixed-size queue that limits
the number of images that are considered. Still-images
are replaced with newer ones that are of better quality,
and there can only be one camera in a certain radius and
orientation range. What this means is that there are a fi-
nite number of still-images that can exist within a certain
area even if there are multiple live cameras present. The
only effect having multiple live cameras may have is to
decrease the time it takes to arrive at maximum camera
coverage, and to decrease the average age of the images.
This assumes, of course, that the cameras are moving in-
dependently and all are equally likely to be at any point
in the region being covered.

The live cameras were limited to a rectangular region
that was 60x40 meters. A still-image camera controlled
a region with a three meter radius for orientations that
were within 15 degrees. If there was an existing camera
that was within three meters of the new camera and it

had an orientation that was within 15 degrees of the new
camera’s orientation, it would be deleted.

We let the system get to a steady state of about 550
still-images. The number of new images grows rapidly
at first, but slows as the density increases and more of the
new images just replace ones that already exist. It took
roughly 5 minutes to increase from 525 stills to 550. At
this steady state, we again measured the frame rate at
14fps and the CPU utilization at the same 95 percent.
The system still felt responsive from a user perspective.

These results indicate that it is not the increase in cam-
eras and the resulting load on the R-Tree that is respon-
sible for system degradation; it is instead the increase
in the number of live cameras, and the processor cy-
cles required to decode their images. This shows that
the architecture is scalable. Since the decoding of each
video stream can be executed independently, the number
of streams that can be handled should scale linearly with
both the quantity and speed of the processors available.
Depending on the requirements of the user, it is possible
to reduce both the bandwidth consumed and the proces-
sor time spent decoding by throttling the frame rates of
the cameras not being viewed. This would reduce the
number of still-images that are generated; a tradeoff that
only the user can make.

7.3 Robustness to Change
The investment made in an architecture is only war-
ranted if it provides on-going value; in particular it
should be durable with respect to changing user require-
ments, and aid the incorporation of the changes dictated
by those new requirements. Below we discuss several
such changes, some performed, others as yet planned.
Only one of these changes was specifically anticipated
in the design of the architecture.

7.3.1 Planned Modification
The hitchhiking metaphor has dominated our design up
to this point. Another compelling modality for Real-
ityFlythrough is best described as the virtual camera
metaphor. Instead of selecting the video stream to view,
the users choose the position in space that they wish to
view, and the best available image for that location and
orientation is displayed. “Best” can either refer to the
quality of the fit or the recency of the image.

It should come as no surprise that the virtual camera
metaphor inspired much of the present design, so there
is a fairly straight-forward implementation to support it.
The Virtual Camera is already a first class citizen in the
architecture. To handle a stationary virtual camera, the
only piece required is a Transition Planner that runs pe-
riodically to determine the “best” image to display. Part
of the virtual camera metaphor, though, is supporting
free motion throughout the space using video game style

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 11

navigation controls. The difficulty we will face imple-
menting this mode is in minimizing the number of im-
ages that are displayed to prevent the disorienting image
overload. This problem was easily managed with the
hitchhiking mode because a fixed (or semi-fixed) path is
being taken. The path allows the future to be predicted.
The only predictive element available in the virtual cam-
era mode is that the user will probably continue traveling
in the same direction. It remains to be seen if this is an
adequate model of behavior.

Another measure of a good architecture is that it is
no more complicated than necessary; it does what it was
designed to do and nothing more. The plan to support a
virtual camera mode explains why the Camera is used as
the primary representation for data in the system. Once
still-images, video cameras, and “views” are abstracted
as cameras, they all become interchangeable allowing
for the simple representation of complicated dynamic
transitions between images.

7.3.2 Unplanned Modifications

In Section 7.1 we described three modifications to the
system that needed to be made between the first and sec-
onds runs of the experiment. We also examine some re-
cent changes to the system that address the user frustra-
tions with there being too many sources of movement
during transitions. Since all of these modifications were
unplanned, they speak to the robustness of the architec-
ture.

Reduce Image Overload. The goal of the first mod-
ification was to reduce the number of images that were
displayed during transitions. This change had the most
dramatic impact on the usability of the system, making
the difference between a successful and unsuccessful ex-
perience. The modification was limited to the Transition
Planner, and actually only involved tweaking some con-
figuration parameters. In Section 6.3 it was revealed that
the current and final destination cameras are given an ad-
ditional boost in their fitness. Adjusting the value of this
boost does not even require a re-start of the system.

In the time since our experiments were run, we have
further improved the transitions by slightly modifying
our approach to finding the next camera to display. In-
stead of looking ahead at a fixed time-interval, we now
calculate when the current image will no longer be
optimal—because it has rotated off-screen, it is zoomed
in too near, or zoomed out too far—and use this time
interval for selecting the next image. Each image is
now displayed for an optimal amount of time. We still
boost the fitness of the destination camera to reduce the
number of images that are displayed as the transition
nears completion. These changes were all confined to
the Transition Planner.

Moving Camera Acquisition. The second modifica-
tion also involved transition planning, but in this case
the change occured in the Path class. The goal was
to improve the users’ experience as they transition to a
moving target. The partial solution to this problem—
implemented for the second experiment—adjusts the
path that the users take so that they first move to the des-
tination camera’s original location and orientation, and
then do a final transition to the new location and orien-
tation. This makes the bulk of the transition smooth, but
the system may still need to make some course correc-
tions during the final transition. The full solution will be
disclosed in the following section.

Too Much Movement. This modification has been
made recently and has not been subjected to experi-
mental evaluation. During the experiments our subjects
voiced concern about the amount of movement experi-
enced during transitions. Not only was the user virtually
moving along the transition path, but the images gener-
ated by live cameras were also moving around the screen
reflecting the camera movement as captured by the sen-
sors. This problem was exacerbated by the seemingly
erratic transition movement experienced during the ac-
quisition of a moving target—helped, but not solved by
the technique described in the previous paragraph.

Our current approach to this problem involves paus-
ing the live video streams during a transition whenever
they are visible on-screen. Once the destination cam-
era has been acquired, the video stream is played back
at increased speed until the users have caught up to the
current time. This has two benefits: (1) it reduces the
amount of motion that needs to be understood by the
user during a transition, and (2) it pauses the moving
target for an interval allowing for smoother final target
acquisition. The video feeds are paused for only short
durations (usually less than one second), so it does not
take long for the user to catch up after the transition, and
in early tests the pauses do not appear to be disruptive.
The technique used for acquiring the moving target is
still required because the target continues to move until
it is actually visible on-screen.

Pausing of the video streams was handled by adding
PVR-like (Personal Video Recorder) capabilities to the
MCU. The incoming video streams are buffered to disk
allowing for time-shifting and future replay of events.
With this functionality added, the Transition Planner
simply pauses and resumes the video feeds at the ap-
propriate times.

Location Accuracy Filtering. The final change to the
system was a little more substantial since it required
modification to both the client and server software. The
goal was to filter the still-images on location accuracy.
This change would have been trivial if we were already

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association12

retrieving location accuracy from the sensors. As it was,
the Sensor Capture component on the client had to be
modified to grab the data, and then on the server side
we had to add a location error field to our Position class.
Now that every Position had an error associated with it, it
was a simple matter to modify the Still Image Generator
to do the filtering.

7.3.3 Future Modifications
Better High Level Abstraction. Forming continual
correlations between the first-person-view and the 2d
birdseye representation takes cognitive resources away
from the flythrough scene and its transitions. We hope
to be able to integrate most of the information that is
present in the birdseye view into the main display. Tech-
niques akin to Halos [1] may be of help.

This modification to the system should only affect the
First Person View. Since we want to present the state in-
formation that is already available in the Birdseye View,
that same information need only be re-rendered in a way
that is consistent with the First Person View. If we want
to create a wider field of view we could increase the field
of view for the virtual camera that makes up the view.
Another possibility is to generate additional views that
are controlled by other virtual cameras. For example a
window on the right of the display could be controlled
by a virtual camera that has a position source offset by
45 degrees.

Sound. Sound is a great medium for providing con-
text, and could be an inexpensive complement to video.
By capturing the sound recorded by all nearby cameras,
and projecting it into the appropriate speakers at the ap-
propriate volumes to preserve spatial context, a user’s
sense of what is going on around the currently viewed
camera should be enhanced.

Sound will be treated like video. Each Physical Cam-
era will have a Sound Source added to it, and new views
supporting sound will be created. There might be a
3D Sound View which projects neighboring sounds, and
a regular Sound View for playing the sound associated
with the dominant camera.

Scale to Multiple Viewers with Multiple Servers.
Currently RealityFlythrough only supports a single user.
How might the system scale to support multiple users?
The MCU component currently resides on the same ma-
chine as the engine. One possibility is to move the MCU
to a separate server which can be done relatively easy
since the coupling is weak. The problem with this ap-
proach, though, is that the MCU is decompressing the
data. We would either have to re-compress the data,
which takes time, or send the data uncompressed, which
takes a tremendous amount of bandwidth. A better ap-
proach would be to leave the MCU where it is and in-

troduce a new relay MCU on the new server layer. The
purpose of the relay MCU would be to field incoming
calls, notify the MCU of the new connections, and if the
MCU subscribed to a stream, forward the compressed
stream.

With the latter approach we could also support con-
necting to multiple servers. The MCU is already capable
of handling multiple incoming connections, so the main
issue would be one of discovery. How would the viewer
know what server/s could be connected to? What would
the topography of the network look like? We leave these
questions for future work.

It is not clear where still-image generation would oc-
cur in such a model. The easiest solution is to leave it
where it is: on the viewing machine. This has the ad-
ditional benefit of putting control of image generation in
the individual user’s hands. This benefit has a drawback,
though. Still images can only be generated if the user is
subscribed to a particular location, and then only if there
are live cameras in that location. What if a user wants to
visit a location at night when it is dark? It’s possible that
the users want to see the scene at night, but it is equally
likely that they want to see older daytime imagery. If
the still-images are captured server side, this would be
possible.

Since server-side still-image generation may stress the
architecture as currently specified, we consider it here.
The engine would not have to change much. We would
need a Still Image Generated listener to receive notifica-
tions about newly generated cameras. A corresponding
Still Image Destroyed listener may also be required. The
camera that is created would have a new Image Source
type called Remote Image Source. The Position Source
would remain locally static. The Remote Image Source
could either pre-cache the image, or request it on the fly
as is currently done. Performance would dictate which
route to take.

7.3.4 Robustness Summary
Each of the modifications presented is limited to very
specific components in the architecture. This indicates
that the criteria used for separating concerns and com-
ponentizing the system was sound.

8 Conclusion
We have presented an architecture for a system that har-
nesses ubiquitous video by providing the abstraction of
infinite camera coverage in an environment that has few
live cameras. We accomplished this abstraction by fill-
ing in the gaps in coverage with the most recent still-
images that were captured during camera pans. The ar-
chitecture is able to support this abstraction primarily
because of the following design decisions:

(1) The Camera is the primary representation for data

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 13

in the system, and is the base class for live video cam-
eras, still-images, virtual cameras, and even the environ-
ment state. Because all of these constructs are treated as
a camera, they can be interchanged, providing the user
with the best possible view from every vantage point.

(2) The Transition Planner is an independent unit that
dynamically plans the route to a moving target and de-
termines the imagery to display along the way. New im-
agery is displayed using an alpha blend which provides
the illusion of seamlessness while at the same time re-
vealing inconsistencies. The system provides full dis-
closure: helping the user make sense of the imagery,
but revealing inconsistencies that may be important to
scene comprehension. Because the Transition Planner
is responsible for path planning, image selection, and
the blending of the imagery, it has a large impact on
the success of RealityFlythrough. Having the control
of such important experience characteristics in a single
componenent and having many of those characteristics
be user controllable is key to the sucess of the current
design.

The architectural choices made during the design of
RealityFlythrough are primarily responsible for the ef-
fectiveness of the system. Complex algorithms that se-
lect the appropriate cameras to display at any given point
are reduced to constructs as simple as fitness functions.
The seemingly complicated rendering of multi-hop tran-
sitions to moving destinations is simplified to the render-
ing of a virtual camera from different perspectives along
a dynamically changing path. The algorithms are sim-
ple; the architecture makes them so.

9 Acknowledgments
Special thanks to Robert Boyer, Jennifer Carlisle,
Adriene Jenik, Charles Lucas, Michelle McCurdy,
Jonathan Neddenriep, and the Active Campus team for
their help with this project, and to our shepherd, Nigel
Davies, whose comments on the paper were invaluable.
This work was supported in part by a gift from Mi-
crosoft Research and contract N01-LM-3-3511 from the
National Library of Medicine.

References
[1] P. Baudisch and R. Rosenholtz. Halo: a technique for vi-

sualizing off-screen objects. In Proceedings of the con-
ference on Human factors in computing systems, pages
481–488. ACM Press, 2003.

[2] D. Brin. The Transparent Society. Perseus Books, 1998.

[3] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti.
Surround-screen projection-based virtual reality: the de-
sign and implementation of the cave. In SIGGRAPH
’93: Proceedings of the 20th annual conference on Com-
puter graphics and interactive techniques, pages 135–
142. ACM Press, 1993.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[5] A. Guttman. R-trees: a dynamic index structure for spa-
tial searching. In Proceedings of the 1984 ACM SIGMOD
international conference on Management of data, pages
47–57. ACM Press, 1984.

[6] H. Jones and P. Hinds. Extreme work teams: using swat
teams as a model for coordinating distributed robots.
In Proceedings of the 2002 ACM conference on Com-
puter supported cooperative work, pages 372–381. ACM
Press, 2002.

[7] T. Kanade, P. Rander, S. Vedula, and H. Saito. Virtualized
reality: digitizing a 3d time varying event as is and in real
time. In Mixed Reality, Merging Real and Virtual Worlds.
SpringerVerlag, 1999.

[8] H. Kuzuoka, G. Ishimo, Y. Nishimura, R. Suzuki, and
K. Kondo. Can the gesturecam be a surrogate? In EC-
SCW, pages 179–194, 1995.

[9] J. Leigh, A. E. Johnson, T. A. DeFanti, and M. Brown.
A review of tele-immersive applications in the cave re-
search network. In VR ’99: Proceedings of the IEEE
Virtual Reality, page 180, Washington, DC, USA, 1999.
IEEE Computer Society.

[10] S. McCloud. Understanding comics: The invisble art.
Harper Collins Publishers, New York, 1993.

[11] N. J. McCurdy and W. G. Griswold. Tele-
reality in the wild. UBICOMP’04 Adjunct Proceed-
ings, 2004. http://activecampus2.ucsd.edu/
˜nemccurd/tele_reality_wild_video.wmv.

[12] N. J. McCurdy and W. G. Griswold. Harnessing mobile
ubiquitous video. Technical Report CS2005-0814, Uni-
versity of California, San Diego, February 2005.

[13] McKinney and Company. Post 9-11 Report of the Fire
Department of New York. August 2002.

[14] U. Neumann, S. You, J. Hu, B. Jiang, and J. Lee. Aug-
mented virtual environments (ave): Dynamic fusion of
imagery and 3d models. In VR ’03: Proceedings of the
IEEE Virtual Reality 2003, page 61. IEEE Computer So-
ciety, 2003.

[15] R. Szeliski. Image mosaicing for tele-reality applica-
tions. In WACV94, pages 44–53, 1994.

[16] S. Tachi. Real-time remote robotics - toward networked
telexistence. In IEEE Computer Graphics and Applica-
tions, pages 6–9, 1998.

[17] A. Vasan and A. U. Shankar. An empirical char-
acterization of instantaneous throughput in 802.11b
wlans. http://www.cs.umd.edu/˜shankar/
Papers/802-11b-profile-1.pdf.

[18] M. Weiser. The computer for the 21st century. Human-
computer interaction: toward the year 2000, pages 933–
940, 1995.

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association14

