
Modeling users’ mobility among WiFi access points

Minkyong Kim
minkyong@cs.dartmouth.edu

Department of Computer Science
Dartmouth College

David Kotz
dfk@cs.dartmouth.edu

Department of Computer Science
Dartmouth College

Abstract

Modeling movements of users is important for simulat-
ing wireless networks, but current models often do not
reflect real movements. Using real mobility traces, we
can build a mobility model that reflects reality. In build-
ing a mobility model, it is important to note that while
the number of handheld wireless devices is constantly in-
creasing, laptops are still the majority in most cases. As
a laptop is often disconnected from the network while
a user is moving, it is not feasible to extract the exact
path of the user from network messages. Thus, instead of
modeling individual user’s movements, we model move-
ments in terms of the influx and outflux of users between
access points (APs). We first counted the hourly visits to
APs in the syslog messages recorded at APs. We found
that the number of hourly visits has a periodic repetition
of 24 hours. Based on this observation, we aggregated
multiple days into a single day by adding the number
of visits of the same hour in different days. We then
clustered APs based on the different peak hour of visits.
We found that this approach of clustering is effective; we
ended up with four distinct clusters and a cluster of stable
APs. We then computed the average arrival rate and the
distribution of the daily arrivals for each cluster. Using
a standard method (such as thinning) for generating non-
homogeneous Poisson processes, synthetic traces can be
generated from our model.

1 Introduction

Modeling the movements of mobile users between ac-
cess points (APs) is important for simulating wireless
networks. It is often not feasible to test new technolo-
gies in real wireless networks, especially not on a large
scale. Simulations allow developers and researchers to
try these new technologies before real-world deploy-
ment. To simulate wireless networks at the AP level, we
need a model that describes movements between APs.
For example, we can estimate AP load or test resource al-

location mechanisms [10] with such a movement model.
In developing a mobility model, we have three goals.

First, the model should reflect real user movements. Cur-
rently available mobility models are not based on real
traces and may not reflect real mobility patterns. Sec-
ond, the model should be general enough to describe the
movements of every device. When a user is moving,
handheld devices often stay turned on, while laptops are
disconnected from the network. Thus, it is not feasible
to extract the physical path of laptop users by looking at
network messages. Third, the model should consider the
hourly variations over a day. A mobile user’s movements
are highly affected by the time of day, and as a result the
load of APs changes over time during a day. For exam-
ple, APs located at a cafeteria are visited most during
lunch time. Thus, it is important to consider the hourly
variations.

In this paper, we present a model of user movements
between APs. From the syslog messages collected on
the Dartmouth campus, we count the number of visits to
each AP. Based on the observation that most APs have
strong daily repetition, we aggregate the multiple days of
the hourly visits into a single day. We then cluster APs
based on their peak hour. We derive four clusters with
different peak times and one cluster consisting of stable
APs whose number of visits does not change much over
24 hours. To model a cluster, we compute hourly arrival
and departure rates, and the distribution of daily arrivals.
We leave the evaluation of this model as future work.

2 Clustering

In this section, we describe the traces that we used and
how we discovered the period of repetition in the traces.
We then describe the method of clustering APs.

2.1 Traces
We used the wireless network data collected at Dart-
mouth College. To observe regular student activities, we
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chose two months—from April 1 to May 31, 2003—
that did not contain a long study break. Whenever
clients authenticate, associate, reassociate, roam, disas-
sociate or deauthenticate with an AP, a syslog message
is recorded. Each message contains a timestamp in sec-
onds, the client’s MAC address, the AP name, and the
event type. During two months, we observed 13,888
clients associating with 533 access points.

We used a filter to convert the syslog traces into the
sequence of APs that each client associates with. This
filter also defines the OFF state, which represents a state
of being not connected to the network. A device enters
the OFF state when it is turned off or when it loses net-
work connectivity. The latter sometimes causes devices
to enter the OFF state for a short duration, lasting only
a few seconds. In terms of network messages, we as-
sume that a client becomes the OFF if it sends a disasso-
ciate or deauthenticate message. An AP also generates a
deauthenticate message for a client that has not sent any
message for the past thirty minutes. In this case, we con-
sider that a client entered OFF state thirty minutes prior
to the time that the deauthenticate message was gener-
ated. After conversion, our traces contain 30.1 million
associations and 5.3 million OFFs.

2.2 Discovering strong period
As the first step for understanding association patterns,
we counted the hourly number of users at each access
point over the two months of the traces. The number
of users at an AP during the ith hour is defined as ui =
ui−1 − li + ei, where li is the number of users who left
this AP during the ith hour, and ei is the number of users
who newly associated with this AP during the ith hour.
As a result, we have a 1464-element vector for each AP,
each element representing one hour in the 61-day period
of our trace.

Instead of using a vector whose size increases linearly
with the length of traces, is it possible to aggregate this
information? For instance, if there is any periodic repe-
tition, we can aggregate the values based on that period.
To discover the period of repetition, we used the Discrete
Fourier Transform (DFT). For each AP, we transformed
the 1464-element vector from the time domain to the fre-
quency domain using DFT. We then chose the strongest
frequency (or period) signal.

The result shows that out of 533 APs, 64.5% of APs
have one day as their peak period. This means that the
temporal pattern repeats every 24 hours. Based on this
observation, we aggregated 61 days into a single day by
adding the number of visits during the same hour of dif-
ferent days. We then ended up with a 24-element vector
for each AP. From this, we removed APs that are not ac-
tively used. We removed APs whose average hourly vis-
its are less than three. This reduced the number of APs
from 533 to 203.

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CV

Figure 1: Coefficient of Variation. This figure shows the
CDF of CV of standard deviation to mean of 203 APs.

2.3 Clustering APs
Our experience with the Dartmouth traces has shown that
different APs have their peak number of users at different
times of the day. For example, APs located at a cafeteria
experience the peak during lunch time. Based on this
experience, we clustered APs based on their peak hour 1.

We first want to identify the APs that are stable. Since
the peak hour for these APs is not significant, these APs
should not be clustered based on this value. To find the
‘right’ cutoff to distinguish stable APs, we plot the CDF
of the coefficient of variation (CV)—ratio of standard de-
viation to mean—of every AP, shown in Figure 1. This
figure shows a knee around the CV of 0.3. Thus, we used
this value as our threshold to identify stable APs. There
are 108 APs whose CV is less than 0.3. These stable APs
form the stable cluster.

We then clustered the rest of APs based on their peak
hour. As many hourly clusters have similar patterns, we
merged these similar clusters and ended up with four
clusters. Cluster 1 represents 11 APs with peak hours
in the morning (10 AM–noon). Cluster 2 consists of 8
APs with peak hours during lunch time (noon–1 PM).
Cluster 3 represents 40 APs with peak hours in the after-
noon (1 PM–5 PM). Cluster 4 consists of 36 APs with
peak hours in the evening (5 PM–1 AM). Note that none
of APs had their peak hour in the early morning (1 AM–
10 AM).

Figure 2 shows the hourly number of visits at each AP
in the five clusters. The hourly visits to an AP is nor-
malized by the total visits across the whole trace for that
AP. The y-axis shows the fraction of visits that happened
during each hour. In Figure 2(a), most of the APs expe-
rience a sudden increase in the number of visits at 8 AM;
within two or three hours after that, this number reaches
its peak. Figure 2(b) shows the APs with peak hours dur-
ing lunch time. These APs have very similar patterns in
hourly visits. It is interesting to note that the graph is not
symmetric across 12 PM; while it increases sharply to-
wards 12 PM, it decreases slowly after 12 PM. We expect
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cluster start time end time APs diff
1 10 AM 12 PM 11 1.8%
2 12 PM 1 PM 8 0.8%
3 1 PM 5 PM 40 1.2%
4 5 PM 1 AM 36 0.5%
5 stable 108 0.3%

Table 1: Clustered APs. Column Diff shows the average dif-
ference between the hourly visits to APs and the hourly median
of the corresponding cluster.

that this is due to the fact that some people have lunch
late since most cafeterias on the campus serve lunch un-
til 2 or 2:30 PM. Figure 2(c) shows the APs with peaks
in the afternoon. The overall trend is having peaks in
the afternoon and most of them slowly decreasing after
that, while some having another smaller peak before de-
creasing. Figure 2(d) shows the APs with peaks in the
evening. The visits of most of the APs in this cluster
increase toward midnight. Figure 2(e) shows the hourly
visits at the stable APs. While most of these APs experi-
ence a minimum between 5 and 6 AM as is the case with
all other clusters, the number of visits does not change
significantly during the rest of the day.

To show the similarity between the graphs within each
cluster, we computed the average difference between the
hourly median of the cluster and the hourly visits to each
AP. The result is shown in Table 1. The difference result
shows that Cluster 1 and 3 are noisier than the rest.

We expect that the location of APs that comprise each
cluster is strongly biased. To see whether this assumption
is true, we consider the types of buildings in which APs
are located. We used six categories of buildings: aca-
demic, administrative, athletic, library, residential, and
social [4]. Figure 3 shows the types of buildings in which
APs within each cluster are located. Cluster 1, which
peaks in the morning, consists mostly of academic build-
ings. Cluster 2, which peaks during lunch time, also
consists mostly of academic buildings. This is an arti-
fact of categorizing some of buildings that contain din-
ing halls as academic. Cluster 3, which peaks in the af-
ternoon, consists mostly of academic buildings and li-
braries. Cluster 4, which peaks in the evening, consists,
not surprisingly, mostly of residential buildings. Clus-
ter 5 of stable APs also consists mostly of residential
buildings. This is because many people tend to leave
their devices at home connected to the wireless network.
Thus, many APs in residential areas do not experience
fluctuations over the course of the day.

To examine the location of APs in more detail, we
mapped the clustered APs on the campus map in Fig-
ure 4. We see that APs in Cluster 2 are in fact located
around two dining areas, marked by arrows. Another in-
teresting observation is that proximity between APs does
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(a) Cluster 1
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(b) Cluster 2
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(c) Cluster 3
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(d) Cluster 4
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Figure 2: Normalized Hourly Visits.
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Figure 3: Building types. This figure shows the types APs
categorized based on buildings in which they are located.

Figure 4: APs on campus map. This figure shows the APs
and their corresponding cluster. Note that only the actively used
APs are clustered. The arrows denote the two dining areas that
contain the APs that peak during lunch time.

not necessarily guarantee that those APs will follow sim-
ilar patterns of usage. This observation agrees with our
previous study of classification of APs [7].

3 Modeling

We want to derive a mobility model that captures activity
of all the wireless devices. Although the number of hand-
held devices is increasing constantly, laptops still make
up the majority of devices2 in the Dartmouth wireless
network. As people rarely use laptops while walking,
laptops tend to be connected to the network at one lo-
cation, disconnected while moving, and reconnected at
another location. Due to this pattern of usage, we cannot
extract the exact path of a laptop user from a source to
a destination. To cope with these on-and-off devices, we
developed our model of wireless network usage in terms
of the arrival rate at each AP, instead of modeling the
movements of individual users.

3.1 Hourly arrival and departure
To compute the arrival and departure rates, we counted
the hourly number of arrivals and departures. We con-
sider every association to each AP. For example, if the
same user associates with an AP twice within an hour,
both associations of that user are added to the hourly ar-
rival value of that AP. Among the users that arrived at an
AP, we considered separately those users that were pre-
viously not connected and those that were connected to
the network through another AP; Ao,i denotes the num-
ber of arrivals from the OFF state during the ith hour and
Aa,i stands for the number of arrivals from another AP
during the ith hour. These two values are normalized by
the total number of arrivals, Atotal = -23

i=0(Ao,i + Aa,i).
The average hourly departures are computed in the

same way.
Figure 5 shows the average of the normalized hourly

arrivals and departures for each cluster of APs. There are
several interesting characteristics to note.

First, all of the clusters, except Cluster 1, have more
transitions from/to another AP than from/to the OFF
state. The high number of transitions from/to another
AP is partly due to the ping-pong effect: associating re-
peatedly with multiple APs. When a device is within
the range of multiple APs, it often changes its associ-
ated AP. Thus, changes in association do not necessarily
mean that the user moved physically. The ping-pong ef-
fect is especially common where the density of APs is
high.

Second, Cluster 1 has more transitions from/to OFF
states than from/to another AP. We expect that this is
because many faculty and students turn on their lap-
tops during morning classes and connect to the network.
Thus, these laptops make transitions from the OFF state
to APs.

Third, the time lag between the arrival at and departure
from APs is small. This means that the users who moved
from one AP to another are not likely to stay at the new
AP for more than an hour. This short duration of stay is
partly due to the ping-pong effect.

Fourth, the time lag between the arrival from and de-
parture to the OFF state is relatively big, meaning that
devices tend to stay long at an AP. We expect that lap-
tops are responsible for most of the transitions to/from
the OFF state since laptop users usually close their lap-
tops while moving. Compared to handheld devices, lap-
tops are less affected by the ping-pong effect. Thus, the
long lag is partly due to laptops being less affected by the
ping-pong effect.

3.2 Daily average
Given that the arrival and departure rates that we com-
puted in the previous section are normalized, we need
the actual number of arrivals and departures to compute
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(b) Cluster 2
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(c) Cluster 3
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(d) Cluster 4
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Figure 5: Hourly arrival and departure.

cluster arrival departure
1 115.177 115.171
2 84.699 84.693
3 121.363 121.334
4 298.915 298.829
5 237.434 237.333

Table 2: Daily arrival and departure rates.
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Figure 6: Distribution of arrivals. This figure shows the dis-
tribution of the total number of arrivals at APs for each cluster.

the hourly value. Table 2 shows the average daily arrival
and departure rates over APs within each cluster. Al-
though the number of arrivals is larger than the number
of departures, the difference is small. This implies that
the number of visits at APs did not increase much during
the two months of the traces.

To model the transitions between APs, the average
over APs presented in Table 2 may not be enough; al-
though APs within a cluster follow similar hourly vari-
ations, they are unlikely to have similar numbers of ar-
rivals. Thus, we need to consider what kind of distri-
bution the daily number of arrivals follows within each
cluster. Figure 6 shows the CDF of arrivals for each clus-
ter across all APs within that cluster.

3.3 Generating traces

Using the arrival rate and the distribution of the actual
number of arrivals at each AP, we can generate synthetic
traces. As our model is a process with time-varying
rates (i.e., a non-homogeneous Poisson process), we can
use the inversion, composition, or rejection (thinning)
method [3] to generate synthetic traces. Since we leave
the trace generation and evaluation of our model as future
work, we describe thinning [9] only briefly.

A non-homogeneousPoisson process is determined by
a rate function ht . Because the linear combination of
Poisson processes is also another Poisson process, we
can generate a time-varying Poisson process by com-
bining multiple processes. In thinning, we first gen-
erate events using an exponential interarrival time with
mean 1/hmax where hmax is the maximum rate of the
time-varying process. At time t when an event is sched-



uled, the event is either accepted with the probability of
ht/hmax or canceled with the probability of 1−h t/hmax.

In summary of Section 3, our model consists of the
following three mobility characteristics: arrival rate fol-
lowing a time-varying Poisson process, departure time
(or duration of stay), and the distribution of the number
of arrivals at APs in each cluster. One can generate syn-
thetic traces from our model using a standard method.

4 Related work
There have been several studies of the traces collected on
the Dartmouth campus. Earlier studies [4, 8] character-
ize the usage of wireless networks; there was no attempt
to model user mobility. Jain et al. [6] present a model of
users’ movements, but focus on movement only within
buildings while our model describes the campus-wide
movement of users.

Some more recent studies use real traces to create mo-
bility models. Hsu et al. [5] present a Weighted Way
Point model developed from a set of survey data of 268
students. Their data is limited compared to ours, which
includes all wireless users on the campus. Bhattachar-
jee et al. [1] developed a hybrid mobility model, which
favors certain directions based on probabilities computed
from the observations made at only six locations on a
large campus. Again, this data is limited compared to our
campus-wide data. Tuduce et al. [11] developed a model
from syslog traces collected on a university campus. The
number of APs that a node visits is chosen from the dis-
tribution extracted from the traces. With this number,
the sequence of visits to APs is chosen randomly. Thus,
the model is unlikely to describe users’ actual sequence
of associations. Another weakness is that the movement
time between APs is chosen from a uniform random dis-
tribution. The model also does not capture variations
over a day.

5 Conclusion and Future Work
In this paper, we present a mobility model of the move-
ments between APs. This model is developed using real
mobility traces collected on the Dartmouth campus and
reflects the real movement patterns of the wireless users
on the campus. In the process of developing the model,
we found that the number of visits to APs exhibits a
strong daily pattern. We also found that clustering APs
based on their peak time is effective; we ended up with
four distinct clusters and a cluster of stable APs. We
then computed the average arrival rate for each cluster
and the distribution of the daily arrivals. Using a well-
known method (such as thinning) for generating non-
homogeneous Poisson processes, synthetic traces can be
generated from our model.

This paper presents ongoing work. In the future, we
plan to pursue several extensions. First, we would like

to evaluate how closely our model describes real move-
ments between APs by comparing the synthetic and the
real traces. Second, we want to merge our model with a
mobility model that describes the physical movements
(or paths) of individual users. Third, we plan to ex-
plore seasonal trends such as variations between aca-
demic terms and breaks and add these trends to our
model.
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Notes
1We considered using AutoClass [2], a Bayesian-based clustering

tool, which takes fixed-size, ordered vectors of attribute values as input.
We liked the fact that it is a unsupervised classification tool (meaning
that the number of classes does not need to be specified beforehand),
but did not use it because it does not consider the relationship between
input parameters.

2The earlier study of Dartmouth traces [4] shows that laptops with
Windows and MacOS comprise over 76% of all the wireless devices.
Smaller handheld devices including Vocera devices and Cisco VoIP
phones comprise 2.5%. (The rest are unidentified.)
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