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Abstract

Technical support contributes 17% of the total cost of
ownership of today’s desktop PCs [25]. An important
element of technical support is troubleshooting miscon-
figured applications. Misconfiguration troubleshooting is
particularly challenging, because configuration informa-
tion is shared and altered by multiple applications.

In this paper, we present a novel troubleshooting sys-
tem: PeerPressure, which uses statistics from a set of
sample machines to diagnose the root-cause misconfigu-
rations on a sick machine. This is in contrast with methods
that require manual identification on a healthy machine
for diagnosing misconfigurations [30]. The elimination
of this manual operation makes a significant step towards
automated misconfiguration troubleshooting.

In PeerPressure, we introduce a ranking metric for mis-
configuration candidates. This metric is based on empiri-
cal Bayesian estimation. We have prototyped a PeerPres-
sure troubleshooting system and used a database of 87 ma-
chine configuration snapshots to evaluate its performance.
With 20 real-world troubleshooting cases, PeerPressure
can effectively pinpoint the root-cause misconfigurations
for 12 of these cases. For the remaining cases, PeerPres-
sure significantly narrows down the number of root-cause
candidates by three orders of magnitude.

1 Introduction

Today’s desktop PCs have not only brought their users
an enormous and ever-increasing number of features and
services, but also an increasing amount of troubleshoot-
ing costs and productivity losses. Studies have shown that
technical support contributes 17% of the total cost of own-
ership of today’s desktop PCs [25]. A large amount of
technical support time is spent on troubleshooting.

Many troubleshooting cases are due to misconfigura-
tions. Such misconfiguration is often caused by data that
is in shared persistent stores such as the Windows reg-
istry and UNIX resource files. These stores may serve
many purposes. They include system-wide resources that
are naturally shared by all applications (e.g., the file sys-

tem). They allow applications installed at different times
to discover and integrate with one another. They enable
users to customize default handlers or appearances of ex-
isting applications. They allow individual applications to
register with system services to reuse base functionalities.
They permit individual components to register with host
applications that provide an extensibility mechanism (e.g.,
toolbars in browsers). To simplify our presentation, we
will focus our discussion on a particular type of impor-
tant configuration data: the Windows Registry [24], which
provides hierarchical persistent storage for named, typed
entries. Our discussions, techniques, and principles are
directly applicable to other types of configuration stores,
such as files, and other platforms, such as UNIX.

Misconfigurations can be introduced in many ways. For
example, an application may unilaterally make seemingly
innocuous changes to shared system configurations and
cause unexpected behaviors in another application. A
software bug may corrupt a Registry entry (by leaving a
data field empty, for example) and break other programs
that cannot handle an incorrect data format. Applying se-
curity patches may introduce Registry settings that are in-
compatible with existing applications [11]. Failed unin-
stallation of applications may introduce configuration in-
consistencies resulting in malfunctions [17]. Adminis-
trators may inadvertently corrupt Registry entries when
they try manually to fix misconfiguration problems using
a Registry editor. Ganapathi et al. analyzed and catego-
rized Registry misconfiguration problems based on their
manifestation and scope of impact [14]. Some examples
include missing Registry entries causing all network con-
nections to disappear from the Control Panel, an extrane-
ous entry causing a CD-ROM player to become inaccessi-
ble, a corrupted entry causing the system to log out a user
upon any successful login.

Maintaining healthy configurations of a computer plat-
form with a large installed base and numerous third-
party software packages has been recognized as a daunt-
ing task [19]. The considerable number of possible con-
figurations and the difficulty in specifying the “golden
state” [26] (the perfect configuration) have made the prob-
lem appear to be intractable.

In this paper, we address the problem of misconfigu-
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ration troubleshooting. There are two essential goals in
designing such a troubleshooting system:

1. Troubleshooting effectiveness: the system should ef-
fectively identify a small set of sick configuration
candidates in a short amount of time;

2. Automation: the system should minimize the num-
ber of manual steps and the number of users in-
volved.

To diagnose misconfigurations of an application on a
sick machine, it is natural to find a healthy machine to
compare against [30]. Then, the configurations that dif-
fer between the healthy and the sick are misconfiguration
suspects. However, it is difficult to identify a healthy ma-
chine automatically. Involving the user in confirming the
correct application behavior seems unavoidable.

We can avoid extensive manual identification work by
observing that the golden state is in the mass. In other
words, an application functions correctly on most of ma-
chines, therefore we can use the statistics from a large
enough sample set as the “statistical golden state”. The
statistical golden state can be combined with Bayesian
statistics to identify anomalous misconfigurations on sick
machines. Then, the misconfigurations can be corrected
by conforming to the majority of the samples. Hence,
we name this statistical troubleshooting method PeerPres-
sure.

We have prototyped a PeerPressure-based trou-
bleshooting system which draws samples from a database
of 87 real-usage machine configuration snapshots. We
have evaluated the system with 20 real-world trou-
bleshooting cases. PeerPressure can effectively pinpoint
the root-cause misconfigurations for 12 of the cases. For
the remaining ones, PeerPressure significantly narrows
down the number of root-cause candidates by three orders
of magnitude. These results have demonstrated PeerPres-
sure as a promising troubleshooting method.

We will first give an overview of the architecture and
operations of the PeerPressure troubleshooting system in
Section 2. In Section 3, we detail the formulation and
the analysis of the PeerPressure algorithm. We discuss
our prototype implementation in Section 4. Then, we
present our empirical results in Section 5. We compare
and contrast our work with the related work in Section 6,
address future work in Section 7, and finally conclude in
Section 8.

2 The PeerPressure Architecture

Figure 1 illustrates the architecture and the operations of a
PeerPressure troubleshooting system. A troubleshooting
user first records the symptom of the faulty application
execution on the sick machine with “App Tracer”. “App
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Figure 1: PeerPressure troubleshooting system architec-
ture and its operations

Tracer” captures the registry entries that are used as input
to the failed execution. These entries are the misconfig-
uration suspects. Then, the user feeds the suspects into
the PeerPressure troubleshooter, which has three mod-
ules: a canonicalizer, a searcher/fetcher, and a statistical
analyzer. The canonicalizer turns any user- or machine-
specific entries into a canonicalized form. For example,
user names and machine names are all replaced with con-
stant strings “USERNAME” and “MACHINENAME”,
respectively. Then, PeerPressure searches for a sample set
of machines that run the same application. The search can
be performed over a “GeneBank” database that consists
of a large number of machine configuration snapshots or
through a peer-to-peer troubleshooting community. In this
paper, we base our discussions on the GeneBank database
approach. For the peer-to-peer approach, we refer in-
terested readers to [28]. Next, PeerPressure fetches the
respective values of the canonicalized suspects from the
sample set machines that also run the application un-
der troubleshooting. The statistical analyzer then uses
Bayesian estimation to calculate the probability for each
suspect to be sick, and outputs a ranking report based on
the sick probability. Finally, PeerPressure conducts trial-
and-error fixing, by stepping down the ranking report and
replacing the possibly sick value with the most popular
value from the sample set. The fixing step interacts with
the user to determine whether the sickness is cured: if not,
configuration state needs to be properly rolled back. This
last step is not shown in the figure and we will not address
it for the rest of the paper.

As careful readers can see, there are still some man-
ual steps involved. The first one is that the user must run
the sick application to record the suspects. The second
one is that the user is involved in determining whether the
sickness is cured for the last step. We argue that these
manual steps are difficult to eliminate because only the
user can recognize the sickness, and therefore has to be in
the loop for those steps. Nonetheless, these manual steps
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only involve the troubleshooting user and not any second
parties.

3 The PeerPressure Algorithm

In this section, we first illustrate the intuition and objec-
tives for calculating the probability of a suspect being
sick. Then, we derive the sick probability formula. At
last, through our analysis, we show that our formulation
achieves the objectives.

3.1 Intuition and Objectives

We use an example to illustrate the intuition and objec-
tives of formulating the sick probability calculation for
each suspect. Table 1 shows three suspects (e1,e2,e3) and
their respective values from a sample set of machine con-
figuration snapshots from the GeneBank. A cursory ex-
amination of the sample set suggests that e1 is probably
healthy and e2 is more likely to be sick than e3. The sus-
pect e2 is more likely to be sick because all samples have
the same value, while the suspect value is different.

In fact, we have seen two types of state in canonicalized
configuration entries: (I) application configuration states
such as e1 and e2, (II) operational states such as times-
tamps, usage counts, caches, seeds for random number
generators, window positions, and MRU (Most Recently
Used)-related information. For troubleshooting configu-
ration failures, we are mostly concerned with type I en-
tries. Type II entries constitute the “natural biological di-
versity” among machines and are less likely to be root
causes of configuration failures. In our example, e3 be-
longs to category II.

Therefore, the objective for the sick probability formu-
lation is not only to capture the anomaly from the golden
mass, but also to weed out the operational state false pos-
itives.

3.2 Formulation

Table 2 summarizes our notation.
To estimate whether a suspect is sick, we need to esti-

mate P(S|V), the probability that a suspect is sick given its
value V . We estimate this probability for all suspects in-
dependently. In the derivation below, let us consider only
one suspect i: all parameters are implicitly indexed by i.

According to Bayes rule [15], we have:

P(S|V) =
P(V |S)P(S)

P(V |S)P(S)+ P(V |H)P(H)
. (1)

We need to estimate each of the terms on the right-
hand-side of Equation (1). We first assume that there is

only one sick entry amongst the suspects (leaving the mul-
tiple sick entry case for future work). Before we observe
any values, the prior probabilities of a suspect being sick
and healthy are

P(S) =
1
t
, P(H) = 1− 1

t
,

where t is the number of possible suspects.
We do not have an extensive training set of sick sus-

pects. Therefore, we assume that a sick entry has all pos-
sible values with equal probability:

P(V |S) =
1
c
,

where c is the cardinality of the suspect entry, the total
number of values that entry can take.

For P(V |H), we leverage the observation of a sample
set of machine configurations from the GeneBank. Let m
denote the number of samples matching V , and N, the size
of the sample set. If we assume that P(V |H) is estimated
via maximum likelihood, we get the estimate

P(V |H) =
m
N

, (2)

P(S|V ) =
N

N + cm(t −1)
. (3)

However, maximum likelihood has undesirable properties
when the amount of sample data is limited. For example,
when there are no matching values to V in the sample set,
then m = 0 and P(S|V) = 1, which expresses complete
certainty that is unjustified. For example, in Table 1, max-
imum likelihood would claim that e2 and e3 are both sick
with complete and equal confidence.

Bayesian estimation [15] of probabilities is more ap-
propriate for the situation of small sample size N, such as
our GeneBank scenario. Bayesian estimation uses a prior
over P(V |H), before the sample set is examined. The es-
timation then uses the posterior estimate of P(V |H) after
the sample set is examined. Therefore, P(V |H) is never 0
or 1.

We first assume that P(V |H) is multinomial over all
possible values V . A multinomial is a probability distri-
bution that governs a multi-sided die, where side j has
label Vj attached to it. The probability of throwing the die
and getting value Vj is p j. Because one side is always up
when a die is thrown, the p j sum to one. The multi-sided
die (and the multinomial) is completely characterized by
the vector p j.

We take the Bayesian approach of treating the p j val-
ues as random variables. Therefore, the p j themselves
follow a distribution. Purely for mathematical simplicity,
we assume that the p j follow a Dirichlet distribution [15].
Dirichlet distributions are a natural prior for multinomi-
als, because they are conjugate to multinomials. That is,
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Registry Key Suspect Machine Machine 1 Machine 2 Machine 3 Machine 4 Machine 5
Registry Value Value Value Value Value Value

e1 .jpg/contentType image/jpeg image/jpeg image/jpeg image/jpeg image/jpeg image/jpeg
e2 .htc/contentType not exist text/x-comp text/x-comp text/x-comp text/x-comp text/x-comp
e3 url-visited yahoo hotmail nytimes SFGate google friendster

Table 1: Intuition behind PeerPressure Sick Probability Formulation

combining observations from a multinomial with a prior
Dirichlet yields a posterior Dirichlet. The use of Dirichlet
priors is very common in Bayesian inference.

Dirichlet distributions are completely characterized by
a count vector n j, which corresponds to the number of
possible counts for each value V j. These counts do not
need to reflect real observations: as we will see below, we
can count phantom data, also.

To perform Bayesian estimation of P(V |H), we first
start by choosing a prior distribution. We assume that all
values Vj are equally probable a priori. Therefore, we
start by assuming a Dirichlet distribution with a count n
for all possible values Vj. We then observe our N samples
of values for this registry key, collecting counts m j for
the different values. The mean of the posterior Dirichlet
yields the posterior estimate P(Vj|H) [15]:

P(Vj|H) =
m j + n
N + cn

. (4)

The parameter n is proportional to the number of obser-
vations that are required to overwhelm the prior and to
move the estimated P(V |H) probabilities away from 1/c.
In other words, the higher the n is, the less confidence we
have for the knowledge obtained from the GeneBank. The
parameter n indicates the strength of the prior. A higher
n leads to a stronger prior, which requires more evidence
(observations N) to change the posterior.

We only need to estimate the P(V j|H) for the value that
actually occurs in the suspect entry. Therefore, we can
replace m j with m, the number of samples that matches
the suspect entry. Combining Equations (4) and (1) yields

P(S|V) =
N + cn

N + cnt + cm(t −1)
. (5)

Notice that Equation (5) never predicts a sick probability
of zero or one, even if m is 0 or N, which is the whole
point of using Bayesian statistics.

We choose n = 1 for our prior, which is equivalent to
a flat prior: all multinomial values p j are equally likely a
priori. This is known as an “uninformative” prior.

Bayesian smoothing with an uninformative prior is just
one method for smoothing probabilities. Another com-
mon method is the Turing-Good smoother [8], which also
estimates the probability of a value unseen in the sample
set. Unfortunately, Turing-Good is not easily applicable

N Number of sample machines
t Number of suspect registry keys
i The index for the suspect key (from 1 to

t)
Vi The value of a suspect key i
c Cardinality: the number of possible

sample values for a suspect key
m The number of samples that match the

suspect value
P(S) The prior probability that a suspect key

is sick
P(H) 1−P(S)
P(S|V) The probability that a suspect key is

sick given its value
P(V |S) The probability that a sick suspect key i

has value Vi

Table 2: Notation

for smoothing probability of registry values: Turing-Good
requires a large number of distinct values which occur
once or a few times in the sample set, in order to extrap-
olate the probability of a value that occurs zero times in
the sample set. There are many registry values that have
a small number of distinct values, hence the extrapola-
tion performed by Turing-Good is not accurate. In other
words, Turing-Good works well in linguistics, where the
number of distinct values (words) is large, which is not
always the case in the registry.

Because we do not use Turing-Good, we must handle
the case of a value that is present in the suspect registry
key, but is unseen in the sample values. We handle this by
counting the number of distinct values in the sample set,
c0, then adding an additional new value, called “unseen”.
Any suspect value that is not present in the sample set
will be assigned to the “unseen” class. Thus, we set the
cardinality c = c0 + 1 and compute the probability of a
registry key being sick given a previously unseen value to
be cn/(cnt + cm(t −1)).

3.3 Asymptotic analysis

To show that our Bayesian probability estimates in Equa-
tion (5) produce sensible results, we illustrate the asymp-
totic behavior of the estimates in various cases.
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Given a suspect set of size t, there are four variables that
affect the sick probability ranking for the suspects: the
number of matches m, the Dirichlet prior strength n, the
sample set size N, and the cardinality c. Please note that
N can vary among the suspects because of the canonical-
ized entries. For example, for a user-specific canonical-
ized entry, the number of samples is the number of users
rather than the number of machines in the GeneBank; and
a machine can have multiple users. Now, we analyze
how each of these parameters affects the sick probabil-
ity and whether the trend agrees with our objectives (see
Section 3.1).

Fixing N, c, and n, as the number of matches m in-
creases, the sick probability decreases, as desired:

lim
m→∞

P(S|V) = 0.

Fixing N, c, and m, as the prior strength n increases, we
have

lim
n→∞

P(S|V) =
1
t

= P(S).

This means that conducting a statistical analysis over such
a sample set is useless in this case. This makes sense,
because when n reaches infinity, the prior has infinite
strength, and therefore observations offer no additional
knowledge.

For understanding the influence of N, we assume that as
N grows, m also grows as f N, for some fraction f between
zero and one. Therefore,

lim
N→∞

P(S|V) =
1

1+ c f (t −1)
.

Notice in the infinite data limit, the prior is completely
“washed out”, and the higher c, f , or t is, the less likely
an entry is to be sick. We also have, for N = m = 0,

lim
N→0

P(S|V) =
1
t

= P(S).

This is also accurate: when N = 0, we are unable to make
any observations. In this case, the suspect set is the only
factor that determines the sick probability.

To illustrate the impact of the cardinality c, we first note
that c → ∞ implies N → ∞. So, applying the analysis for
N above, we have

lim
c→∞,N→∞

P(S|V ) = lim
c→∞

1
1+ c f (t −1)

= 0.

This is desirable because when c is large, it represents a
higher level of “biological diversity”, and therefore, being
different is less likely due to some sickness.

Now, we examine the case of operational state where
m = 0 most likely, we have

P(S|V) =
N + cn
N + tcn

.

Fixing N, the sick probability decreases with increased
cardinality when there are no matches because the deriva-
tive of P(S|V) with respective to c is negative when t > 1.
When t = 1, P(S|V ) = 1 as desired. Therefore, for our
example in Table 1, Formula 5 will rank e2 sicker than e3,
as desired.

In summary, our analysis demonstrates that Formula 5
achieves our objective of capturing anomalies and weed-
ing out operational state false positives. Later, in Sec-
tion 5, we further demonstrate through real-world trou-
bleshooting cases that our PeerPressure algorithm is in-
deed effective.

4 The PeerPressure Prototype

We have prototyped the PeerPressure troubleshooting sys-
tem as shown in Figure 1. We have created a GeneBank
database using Microsoft SQL Server 2000 [10], which
contains real-usage registry snapshots from 87 Windows
XP desktop PCs. Approximately half of these snapshots
are from three diverse organizations within Microsoft:
Operations and Technology Group (OTG) Helpdesk in
Colorado, MSR-Asia, and MSR-Redmond. The other half
are from machines across Microsoft that were reported to
have potential Registry problems.

We have implemented the PeerPressure troubleshooter
in C# [22], which issues queries to the GeneBank to fetch
the sample values and carries out the sick probability cal-
culation (Section 3). We use a set of heuristics for canon-
icalizing user-specific and machine-specific configuration
entries in the suspect set. One obstacle we encountered
during our prototyping is that values for a specific registry
entry across different machines are the same but with dif-
ferent representations. For example, 1, “#1”, and “1” all
represent the same value. Nonetheless, the first one is an
integer and the latter two are different string representa-
tions. Such inconsistent representations of the same data
affect all parameter values needed by the sick probability
calculation. We use heuristics to unify the different repre-
sentations of the same data value. We call this procedure
“data sanitization” for future reference. For example, one
such heuristic is to find all entries that have more than one
type. (Registry entries contain a “type” field). For a reg-
istry entry that has both numeric-typed and string-typed
values among different registry snapshots, all string val-
ues are converted into numbers.

Our PeerPressure troubleshooter, although unoptimized
in its present form, is already fast. We use a dual Intel
Xeon 2.4GHz CPU workstation with 1 GB RAM to host
the SQL server and to run the troubleshooter. On average,
it takes less than 45 seconds to return a root-cause rank-
ing report for suspect sets of thousands of entries. The
response time generally grows with the number of sus-
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Maximum registry size 333,193
Minimum registry size 77,517
Average registry size 198,376
Median registry size 198,608
Distinct canonicalized entries in GeneBank 1,476,665
Common canonicalized entries 43,913
Distinct entries data-sanitized 918,898

Table 3: Registry Characteristics

pects. Further analysis shows that database queries dom-
inate the troubleshooting response time because we issue
one query per suspect entry. Figure 2 shows the relation-
ship between the response time and the number of sus-
pects for the 20 troubleshooting cases under study. With
aggressive database query batching, we anticipate that the
response time can be greatly improved.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

8 37 64 10
5

13
5

18
2

23
7

29
3

35
4

48
2

85
3

11
71

12
30

13
50

17
77

17
79

32
09

35
90

39
83

54
83

# of Suspects

R
es

p
o

n
se

T
im

e
(S

ec
o

n
d

s)

Figure 2: Response Time vs. Number of Suspects for 20
real-world troubleshooting cases.

5 Troubleshooting Effectiveness

In this section, we evaluate the troubleshooting effective-
ness of the PeerPressure prototype on 20 real-world trou-
bleshooting cases. We first examine the registry character-
istics based on the registry snapshots from our GeneBank
repository, then we present and analyze our troubleshoot-
ing results.

5.1 Registry Characteristics

The Windows Registry contains most of the configura-
tion data for a desktop PC. Table 3 summarizes some reg-
istry statistics from the GeneBank. The sheer volume of
configuration data is daunting. Figure 3 shows the reg-
istry size distribution among the registry snapshots in the
GeneBank. Registry sizes range from 77,517 to 333,193
entries. The median is 198,608 entries. The total num-
ber of distinct canonicalized entries in the GeneBank is

1,476,665. Across all the machines, there are 43,913
common canonicalized entries. With our canonicalization
heuristics, an average of 68,126 entries from each reg-
istry snapshot are canonicalized. With our data sanitiza-
tion heuristics (see Section 4), we have sanitized 918,898
entries in the GeneBank.

Cardinality is an essential parameter of our PeerPres-
sure algorithm (Section 3). Because the GeneBank may
not contain all possible “genes” (entry values), we treat all
values that are unknown to the GeneBank as a single value
unseen. This unseen value effectively increments the ob-
served cardinality from the GeneBank by one. Therefore,
any entry from the GeneBank has a cardinality of at least
two; and entries that do not exist in the GeneBank have
a cardinality of one. In addition, some entries may not
exist on some sample machines. For such cases, these en-
tries have the value no entry. Figure 4 shows the distribu-
tion of the cardinality for all canonicalized entries in the
GeneBank. 87% of the registry entries have a cardinality
of two, 94% no more than three, and 97% no more than
four. The low cardinality of registry entries contributes to
the excellent troubleshooting results of our PeerPressure
algorithm (as shown in the next section) because when
the cardinality is low, the conformity among the samples
is strong.

5.2 PeerPressure Performance with Real-
World Troubleshooting Cases

In this section, we present our empirical troubleshooting
results for PeerPressure.

We use the 20 cases listed in Table 4 for our exper-
iments. They were all real-world failures that troubled
some users. We have the knowledge of root-cause mis-
configuration a priori. We picked 20 out of 129 accessi-
ble cases from Microsoft (MS) Product Support Service
(PSS) e-mail logs, MS Helpdesk, web support forums,
and our co-workers’ reported problems. The only crite-
rion we used in selecting these cases is the ease of repro-
ducing application failures since some cases require spe-
cial hardware setup or specific software versions. Cases 1,
11, 13, and 14 are among the most commonly encountered
configuration problems from MS PSS e-mail logs [14];
Cases 2, 9, and 10 are from MS Helpdesk; Cases 15-18
are from a web support forum; and the rest are from our
co-workers.

Since we know the misconfigured, root-cause entry for
each case, we use the ranking of the entry as our eval-
uation metric. To allow parameterized experiments, we
reproduced these failures on a real-usage desktop using
configuration user interface (e.g., Control Panel applets)
to inject the failures whenever possible, and using direct
editing of the Registry for the remaining cases. Then, we
used “App Tracer” to get the suspects, the entries that are
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ID Name Description of Problem

1 System Restore No available checkpoints are displayed because the calendar control object cannot be
started due to a missing Registry entry.

2 JPG Right clicking on a JPG image and choosing the Send To → Mail Recipient option does
not offer the resize option dialog box due to a missing Registry entry.

3 Outlook User is always asked upon exiting Outlook whether she wants to permanently delete all
emails in the Deleted Items folder, due to a hard-to-find setting.

4 IE Passwords Internet Explorer (IE) browser does not offer to automatically save passwords; the op-
tion to re-enable the feature is difficult to find.

5 Media Player Windows Media Player “Open Url” function fails if the EnableAutodial Registry entry
is changed from 0 to 1 on a corporate desktop.

6 IM MSN Instant Messenger (IM) significantly slows down if the firewall client is disabled
on a corporate desktop.

7 IE Proxy IE on a machine with a corporate proxy setting fails when the machine is connected to
a home network.

8 IE Offline IE “Work Offline” option may be automatically turned on without user knowledge; user
is then be presented with a cached offline page instead of the default start page when
launching IE.

9 Taskbar IE windows are unexpectedly grouped under the Windows Explorer taskbar group, due
to the addition of a Registry entry.

10 Network Connections Control Panel → Network Connections shows nothing, due to a missing Registry key.
11 Folder Double-Clicking Double clicking any folder in the right pane of Windows Explorer incorrectly brings up

the “Search Results” window.
12 Outlook Express Microsoft Outlook could not be started because the Outlook Express installation appears

to be missing, due to a missing Registry key.
13 Cannot Start Executables Double-clicking any EXE file does not launch the application.
14 Shortcut Double-clicking any shortcut does not launch the application.
15 IE Menu Bar IE menu bar disappears due to a corrupted Registry key name.
16 IE Favorites IE uses the “unknown file type icon” for some of the links in the Favorites.
17 Sound Problem Warning sound is missing when an invalid command was typed into Start→Run.
18 IE New Window Right-clicking a link inside IE and choosing “Open in New Window” shows nothing.
19 Yahoo Toolbar Yahoo Companion per-user installation affects all users.
20 Media Player in IE Internet Explorer always launches Media Player on the left pane.

Table 4: 20 Real-World Troubleshooting Cases Used for PeerPressure Evaluation
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touched during the faulty execution of the application (see
Section 2). Finally, we ran PeerPressure to produce the
ranking reports.

5.2.1 Root Cause Ranking

For each troubleshooting case, Table 5 shows the rank-
ing of the root-cause entry, the number of ties, the num-
ber of suspects, the cardinality of the root-cause entry, the
number of samples matching the suspect’s root-cause en-
try value, and the number of samples. Ranking ties can
happen when the estimated probabilities of some entries
have the same values. The non-zero values for the “#
of Matches” column indicate that the GeneBank contains
registry snapshots with the same sickness. Nonetheless,
our assumption that the golden state is in the mass is still
correct, since there are indeed only very small percentage
of the sick machines in the GeneBank.

As we can see from the table, the number of suspects is
large: ranging from 8 to 26,308, with a median of 1,171,
and an average of 2,506. Therefore, PeerPressure is an in-
dispensable step of troubleshooting since sieving through
these large suspect sets for root-cause entries is like find-
ing a needle in a haystack.

For 12 out of the 20 cases, PeerPressure ranks the root-
cause entry as number one without any ties. For the re-
maining cases, PeerPressure narrows down the root-cause
candidates in the suspect set by three orders of magnitude
for most cases. There is only one case, case 19, which our
GeneBank cannot help because only two machines in the
GeneBank have the application and they happen to be sick
and have the same sick values as well.

5.2.2 The Causes of False Positives

In this section, we give an analysis on the causes of false
positives. The sick probability metric ranks the novelty of
a suspect entry in the samples from the GeneBank. The
more novel a suspect is compared with other suspects, the

lower its rank number is (i.e., the more sick the suspect
is). xs One source of false positives is due to the nature
of the root-cause entry. If the root-cause entry has a large
cardinality, it likely receives a larger rank number based
on our sick probability formula in Section 3. Case 20 falls
into this category of false positives. The root-cause entry
for Case 20 has a high cardinality of 65 while the rest of
the cases have low cardinalities (Table 5).

The nature of the root-cause entry is only one factor.
The ranking also depends on how the root-cause entry
relates to other entries in the suspect set. A highly cus-
tomized machine likely produces more noise, since the
unique customizations can be even less conforming than
a sick entry value. Case 11, 12, and 16 fall in this cate-
gory.

Lastly, GeneBank is not pristine. The non-zero values
in Column “# of Matches” in Table 4 indicate the number
of machines in the GeneBank that have the same sickness.
This affected the ranking of Case 2, 6, and 10.

5.2.3 The Impact of the Sample Set Size

It is intuitive that the larger the sample set is, and the better
the root-cause ranking will be. However, our evaluation
results indicate that this is not entirely true.

We have experimented with sample sets of size 5, 10,
20, 30, 50, and 87. For each sample set size N, we pick
N samples from the GeneBank randomly for 5 times, then
we average the root-cause ranking of the random sample
sets. Table 6 shows root-cause ranking trend for various
sample set sizes. The average number of ties for each
sample set size is indicated in the parentheses. For the first
three cases in the table, the root-cause ranking is perfect
regardless of the sample set size. This perfect behavior is
caused by all samples of the root-cause entry taking the
same value. Any subset of the GeneBank samples still
has the same value. No other suspects have a high sick
probability when the sample set is small.

The cases belonging to the middle portion of Table 6
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Case Rank Ties # of Suspects Cardinality # of Matches # of Samples
1. System Restore 1 0 1350 3 1 87
2. JPG 16 0 1779 3 5 87
3. Outlook 1 0 37 4 7 566
4. IE Passwords 1 0 135 4 1 566
5. Media Player 1 0 182 6 1 566
6. IM 12 0 1777 4 8 87
7. IE Proxy 1 0 1171 16 0 566
8. IE Offline 1 0 1230 4 1 566
9. Taskbar 1 0 64 4 2 566
10. Network Connections 2 0 354 2 1 87
11. Folder Double-Click 2 1 26308 2 0 87
12. Outlook Express 3 0 482 2 0 87
13. Cannot Start Executables 1 0 237 2 0 87
14. Shortcut 1 0 105 2 0 87
15. IE Menu bar 1 2 3590 2 0 87
16. IE Favorites 2 0 3209 3 0 87
17. Sound Problem 1 0 8 1 0 566
18. IE New Window 1 0 853 2 0 87
19. Yahoo Tool bar n/a
20. MediaPlayer in IE 9 0 5483 65 0 566

Table 5: Root-cause Ranking Results

Case 5 Samples (Ties) 10 (Ties) 20 (Ties) 30 (Ties) 50 (Ties) 87 (Ties) # of matches

Perfect ranking re-
gardless of the sample
set size
5. Media Player 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1
14. Invalid Shortcut 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 0
17. Sound Problem 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 0

Ranking Trend not
solely dependent on
the sample set size
10. Network Connec-
tions

1.6 (1) 1.4 (0.6) 2 (0.2) 1.4 (0.2) 1.4 (0) 2 (0) 1

20. Media Player in IE 6.2 (0.2) 6.2 (0) 8 (0) 11 (0) 11.2 (0) 9 (0) 0
2. JPG 8.4 (0.2) 13.4 (0.4) 14.6 (0.2) 13 (0.2) 14.2 (0) 16 (0) 5
6. IM 15.6 (1.6) 104 (0.2) 20 (0) 15.4 (0) 14.6 (0) 8 (0) 8

Larger Sample Set
improves ranking
8. IE Offline 1 (0.2) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1
13. Cannot Start Exe-
cutables

1 (0.4) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 0

1. System Restore 1 (0) 1 (0.2) 1 (0.2) 1 (0.2) 1 (0) 1 (0) 1
9. Taskbar 1.6 (5) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 2
3. Outlook 2.2 (0.4) 1.4 (0.8) 1.6 (0.8) 1.4 (0.8) 1 (0) 1 (0) 7
4. IE Passwords 5.8 (8.2) 3.2 (2.4) 3.2 (2.4) 1 (0) 1 (0) 1 (0) 1
7. IE Proxy 3.4 (1.8) 2.2 (0.2) 2 (0.8) 3(3.2) 1(0) 1 (0) 0
15. IE No Menu Bar 6.4 (10.8) 3.2 (3.6) 2.2 (2.6) 1.6 (2.4) 1 (2) 1 (2) 0
16. IE Favorites 18.2 (1) 3.8 (1.8) 3.2 (0.8) 3.8 (0) 2.8 (0) 2 (0) 0
18. IE New Window 7 (0.8) 3.8 (0.8) 2.2 (0) 1.6 (0) 1 (0) 1 (0) 0

Table 6: Impact of the Sample Set Size
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Case Machine 1 Machine 2 Machine 3

2 16 (0) / 1779 32 (2) / 1272 14 (0) / 1272
5 1 (0) / 182 1(0) / 566 1 (0) / 1657
6 1(0) / 2789 12(0) / 1777 12 (0) / 2017
14 1(0) / 105 1(0) / 84 1 (0) / 64
16 1 (0) / 302 2(0) / 3209 1 (3) / 1908

Table 7: Sick Machine Sensitivity Evaluation. Each en-
try has the format of RootCauseRanking (numberOfTies)
/ numberOfSuspects.

do not show a clear trend as a function of the sample set
size. For Case 20, the root-cause entry has a scattered
value distribution and a high cardinality of 65. Therefore,
drawing any subset of the samples reflects the same value
diversity, and therefore the ranking does not improve with
larger sample set. For the other cases, although there
is strong conformance in their value distributions, their
rankings are affected by other entries in the suspect sets.

For the third category of the cases in the bottom part
of Table 6, the root-cause ranking improves with larger
sample set. For the first 4 cases, they have near-perfect
root-cause ranking. Nonetheless, the number of ties de-
creases quickly as the sample set size increases. For most
of the cases belonging to this category, we can see that
the GeneBank has polluted entries according to the “# of
Matches” column in Table 5. In this situation, enlarging
the sample set reduces the impact of the polluted entries
and therefore contributes to the decreasing trend of the
rankings.

5.2.4 Sick Machine Sensitivity Evaluation

So far, we have only presented results from one sick ma-
chine’s vantage point. In fact, the troubleshooting re-
sults do depend on how uniquely the sick machine is cus-
tomized and configured. To understand how our results
vary with different sick machines, we have picked three
real-usage machines that belong to different users, and
evaluated the sick machine sensitivity with 5 cases. Ta-
ble 7 shows that the troubleshooting results on these sick
machines are mostly consistent. In some cases, such as
Case 6, a larger suspect set leads to better ranking rather
than introducing more noise, as one would have expected.
This is simply because the larger suspect set on one ma-
chine is not necessarily a superset of the smaller suspect
set on the other machine.

6 Related Work

There are two general approaches in system management:
the white-box [6][3][9][21][16][27] and the black-box ap-

proach [30]. In the former, languages and tools are de-
signed to allow developers or system administrators to
specify ”rules” of proper system behavior and configura-
tions for monitoring and ”actions” to correct any detected
deviation. The biggest challenge for the white-box ap-
proach is in the accuracy and the completeness of the rule
specification.

Strider [30], the precursor of this work, uses the black-
box approach for misconfiguration troubleshooting: prob-
lems are diagnosed and corrected in the absence of specifi-
cation of correct behavior. In Strider, the troubleshooting
user first identifies a healthy machine on which the appli-
cation functions correctly. This can be done by finding
a healthy configuration snapshot in the past on the same
machine or by finding a different healthy machine. Next,
Strider performs configuration state differencing between
the sick and the healthy, the difference is then further nar-
rowed down by intersecting with suspects obtained from
“App Tracer” (Section 2). Finally, Strider uses noise-
filtering techniques to further narrow down the root-cause
candidate set. Noise filtering uses a metric called Inverse
Change Frequency, which looks at the change frequency
of a registry entry. The more frequent an entry changes,
the more likely it is a piece of operational state that is un-
likely to be a root cause.

PeerPressure also takes the general black-box ap-
proach. PeerPressure differs from Strider in the following
ways:

1. With statistical analysis, PeerPressure eliminates the
manual step of the troubleshooting user identifying
a healthy machine. This also eliminates the involve-
ment of any second parties in cross-machine trou-
bleshooting scenarios.

2. PeerPressure replaces the state-differencing and
noise-filtering steps of Strider with a more general
step of statistical analysis.

3. Strider uses order ranking which means that the final
ordering of suspects is based on the sequence of their
usage during application execution. The later the
root-cause entry appears during the execution, the
more false positives there are. In contrast, PeerPres-
sure is not sensitive to the sequence of suspect en-
try usage. Nonetheless, the larger the suspect set is,
the more likely there are entries that are more unique
than the root-cause entry.

4. On the measure of root-cause ranking, PeerPres-
sure’s yields better ranking for most of the cases.

Another interesting work that also takes the black-box
approach is that of Aguilera et al. [1]. They address
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the problem of black-box performance debugging for dis-
tributed systems. They developed and compared two algo-
rithms for inferring the dominant causal paths. One uses
the timing information from RPC messages. The other
uses signal processing techniques. The significant finding
of this work is that traces gathered with little or no knowl-
edge of application design or message semantics are suffi-
cient to make useful attributions of the sources of system
latency. Therefore, their techniques are applicable to al-
most any distributed systems.

In a recent position paper, Redstone et al. [23] de-
scribed a vision of an automated problem diagnosis sys-
tem that automatically captures aspects of a computer’s
state, behavior, and symptoms necessary to characterize
the problem, and matches such information against prob-
lem reports stored in a structured database. Redstone’s
work addresses the troubles with known root causes. Peer-
Pressure complements this work with the techniques that
identify the root causes of unsolved troubleshooting cases.

The concept of using statistical techniques for problem
identification has emerged in several areas in recent years.
One way of using statistics is to build a statistical model of
healthy machines, and compare a sick machine against the
statistical model. PeerPressure falls into this category and
is the first to apply Bayesian techniques to the problem
of misconfiguration troubleshooting. Other related work
in this category [12][18][13] first use statistics to build a
correct behavior model which is used to detect anomalies.
Then, the number of false positives is minimized as much
as possible. Engler et al. [12] use static analysis on the
source code to derive likely invariants based on the statis-
tics on some pre-defined rule templates (such as a call to
f unction a() must be paired with a call to f unction b()).
Then, potential bugs are recognized as deviant behaviors
from these invariants. Engler et al. have discovered hun-
dreds of bugs in Linux and FreeBSD to date. Later, they
further improved the false positive rate in [18]. Forrest et
al.’s seminal work on host-based intrusion detection sys-
tem [13] builds a normal-behaving system call sequence
database by observing system calls for various processes.
Then, the intrusions with abnormal system call sequence
can be caught. Apap et al. [2] designed a host-based intru-
sion detection system that builds a model of normal Reg-
istry behavior through training and showed that anomaly
detection against the model can identify malicious activ-
ities with relatively high accuracy and low false positive
rate.

Another way of using statistics is to correlate the ob-
served service failure with root-cause software compo-
nents or source code for debugging. Liblit et al. [20] uses
statistical sampling combined with a number of elimina-
tion heuristics to analyze program behaviors. Program
failures, such as crashes, are correlated with specific fea-
tures or even specific variables in a program.

Brown et al [5] takes a black-box approach to infer
hardware or software component dependencies by ac-
tively probing a system. Statistical model is then used
to estimate dependency strengths. Similarly, Brodie et
al [4] uses active probing with network events like pings
or traceroutes for diagnosing network problems in a dis-
tributed system: a small set of high quality probes are first
selected, then a Bayesian network is constructed for infer-
ring faults.

The PinPoint root-cause analysis framework [7] is a de-
bugger for component-based systems. PinPoint identifies
individual faulty components that cause service failures
in a distributed system. PinPoint uses data clustering on a
large number of multi-tier request-response traces that are
tagged with perceived success/failure status. The cluster-
ing determines the root-cause subset component(s) for the
service failures.

7 Future Work and Discussion

We have interesting future work ahead of us. In this pa-
per, we assume that there is only one sick entry among the
suspects. However, it is possible that multiple entries con-
tribute to the sickness collectively. We call the process of
identifying multiple root-cause entries, multi-gene trou-
bleshooting. Determining the number of genes involved
in a troubleshooting case in addition to formulating the
multi-gene sick probability are non-trivial tasks because
the sick probability of entries are no longer independent.

Sometimes, a failed application execution may be
caused by another application’s misconfigurations. For
example, a web browser may fail because of an incor-
rect VPN setting. The trace obtained from our App-
Tracer would not contain root-cause misconfigurations of
another application. Cross-application misconfiguration
troubleshooting remains an open challenge.

In environments where most or all machines have auto-
matically maintained configurations, sample set selection
criteria would need to be adjusted not to include the ma-
chines under the same automatic management.

PeerPressure takes the advantage of the strong confor-
mance in most of the configuration entries for diagnosing
the anomalies. However, some technology savvy users
may customize their PCs so heavily that their configu-
rations appear unique or “anomalous” to PeerPressure.
These are inevitable false positives produced by PeerPres-
sure.

Another open question is GeneBank maintenance. The
GeneBank currently has one-time machine configuration
snapshots from 87 volunteers. Without further mainte-
nance, these configuration snapshots will be essentially
out-of-date because of numerous software and OS up-
grades. Effectively managing the evolving GeneBank is a
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challenge. Further, we have not yet addressed the privacy
issue. The privacy for both the users who contribute their
configuration snapshots to the GeneBank and the users
who troubleshoot their computers with the GeneBank
need to be protected for real deployment. An alterna-
tive to the GeneBank approach is to “search and fetch”
in a peer-to-peer troubleshooting community (see Sec-
tion 2). Drawing the sample set in a peer-to-peer fash-
ion is essentially treating all computer configuration snap-
shots from all the peer-to-peer participants as a distributed
database that is always up-to-date and requires no mainte-
nance. Nonetheless, the peer-to-peer approach does result
in longer search and response time. Further, ensuring the
integrity of the troubleshooting result is a challenge in the
face of unreliable or malicious peers. We have a proposal
for a privacy and integrity-preserving peer-to-peer trou-
bleshooting system. For details, please see [29]

8 Conclusions

We have presented PeerPressure, a novel troubleshooting
system that uses statistics from a set of sample machines
as the golden state to diagnose the root cause misconfigu-
rations on a sick machine. In PeerPressure, we introduce a
ranking metric based on Bayesian estimation of the prob-
ability of a suspect candidate being sick, given the value
of that suspect candidate.

We have developed a PeerPressure troubleshooter and
used a database of 87 real-usage machine configuration
snapshots to evaluate its performance. With 20 real-world
troubleshooting cases, PeerPressure can effectively pin-
point the root-cause misconfigurations for 12 of the cases.
For the remaining cases, PeerPressure significantly nar-
rows down the number of root-cause candidates by three
orders of magnitude.

In addition to achieving the goal of effective trou-
bleshooting, PeerPressure also makes a significant step
towards automation in misconfiguration troubleshooting
by using a statistical golden state, rather than manually
identifying a single healthy state.

Future work includes multi-gene troubleshooting
where there are multiple root-cause entries instead of one,
as well as privacy-preservation mechanisms for real de-
ployment.
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