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Abstract

Advances in modern cryptography coupled with rapid growth
in processing and communication speeds make secure two-
party computation a realistic paradigm. Yet, thus far, interest
in this paradigm has remained mostly theoretical.

This paper introduces Fairplay [28], a full-fledged system
that implements generic secure function evaluation (SFE).
Fairplay comprises a high level procedural definition lan-
guage called SFDL tailored to the SFE paradigm; a compiler
of SFDL into a one-pass Boolean circuit presented in a lan-
guage called SHDL; and Bob/Alice programs that evaluate
the SHDL circuit in the manner suggested by Yao in [39].

This system enables us to present the first evaluation of an
overall SFE in real settings, as well as examining its com-
ponents and identifying potential bottlenecks. It provides a
test-bed of ideas and enhancements concerning SFE, whether
by replacing parts of it, or by integrating with it. We exem-
plify its utility by examining several alternative implementa-
tions of oblivious transfer within the system, and reporting
on their effect on overall performance.

1 Introduction

Motivation. Modern cryptography is usually considered to
have its beginning in the landmark papers of Diffie and Hell-
man [16], who introduced the concept of public key encryp-
tion, and of Rivest, Shamir and Adelman [35] who suggested
a concrete public key system. The fundamental theoretical
studies along these lines originate in the late 1970’s, and the
results - the well-known cryptographic primitives of public
key encryption, authentication and digital signature - have
been widely applied in practice during the 1990’s.

However, theoretical cryptography provided additional,
powerful (and perhaps less intuitive) tools. One of the most
attractive paradigms in this category is a secure function eval-
uation (SFE). It allows two participants to implement a joint
computation that, in real life, may be implemented using a
trusted party, but does this digitally without any trusted party.

A classic simple example of such a computation is the Mil-
lionaires’ problem [39]: Two millionaires want to know who
is richer, without any of them revealing to the other his net
worth. More generally, informally, the two-party SFE prob-
lem is the following. Alice has an input �� � ��� � � � � �� and
Bob has an input �� � ��� � � � � ��. They both wish to learn
����� ��� for some publicly known function � , without reveal-
ing any information on their inputs that cannot be inferred
from ����� ���. (We refer the reader to, e.g. [20], for a for-
mal introduction to SFE.) SFE is a universal building block,
and many interesting cryptographic protocols can be formu-
lated as instances thereof, e.g., zero knowledge proofs, pri-
vate database mining, electronic auction and negotiation, and
voting protocols.

Thus far, SFE techniques are rarely applied in practice, and
are typically considered to have mostly theoretic significance.
In this paper, we suggest that it is prime time to start trans-
lating these theoretical results into practical applications. We
see three main forces converging to make this transition pos-
sible:

1. New applications: new applications are driven by ad-
vances in the communication infrastructure (such as the ubiq-
uity of the Internet or the emergence of web services), cou-
pled with increased demand for information based relation-
ships (e.g. for business or homeland security purposes).
These applications often involve sensitive information related
to issues such as pricing, business processes, or personal in-
formation, and their security often relies on trusting a desig-
nated trusted party (such as eBay in the case of auctions). Not
all users feel completely confident giving this trust, especially
when high stakes are involved. SFE offers a solution for un-
mediated e-commerce applications such as auctions and web
services [32, 17].

2. New cryptographic techniques: we have lately seen a
growing theoretical effort to overcome the main efficiency
bottlenecks of previous theoretical solutions. Such efforts
include more efficient cryptographic solutions for specific
tasks such as auctions and certain database access tasks



(e.g. [31, 13]), as well as general theoretical results improving
on various efficiency parameters (e.g. [29, 30, 24]).

3. Improved CPU and communication speeds: while send-
ing megabytes of communication, or spending GigaFlops of
processing power would have seemed unreasonably expen-
sive only a few years ago, such effort is certainly acceptable
now. It is not unreasonable to spend such an effort even for
tasks whose monetary value is a few dollars. Even Gigabytes
of communication, and TeraFlops of processing power are
reasonable for important tasks.

The goal of this work is to provide the first full fledged se-
cure two-party computation tool that is readily deployed by
the community. Fairplay provides the first solid answers to
questions regarding the efficiency of the overall computation,
and its breakdown into parts. Thus, using this tool, we are
able to tell for the first time the overall price of solving a
problem like the above mentioned Millionaires’ problem in
real network settings (the answer is � � seconds over a wide
area network, see Section 6). We further discern the cost of
different components of the SFE, and assess their relative ef-
fect on overall elapsed time. Thus, for example, in Section
6 we analyze the relative contribution of the public key op-
erations performed as part of the SFE protocol, and conclude
that while 27%-77% of the time is due to public key opera-
tions over a fast LAN, only 9%-42% is accountable to public
key operations over a wide area link.

Fairplay also serves as a test-bed of new ideas and algo-
rithmic variations. For demonstration, we already considered
several flavors of oblivious transfer (OT) algorithms within
our tool. Specifically, we have implemented the original
scheme by Bellare and Micali from [6, 7], the enhancements
suggested by Naor and Pinkas in [30], and straight-forward
communication batching. Our experiments show a remark-
able matching of the predicted 30% speedup of the enhance-
ment in [30] over [6]. The effect of communication batching
is observed to be up to nearly nine-fold speedup (see Section
6). Thus, our platform provides valuable guidance in trading
different parameters.

Technical approach. The first issue we tackle is the com-
pilation paradigm. The correct paradigm for addressing the
computation is to adopt the trusted party model for the defini-
tion of tasks, and to compile these definitions into protocols
that do not use any trusted party. In this way, the user spec-
ification is completely oblivious to the actual protocol that
implements it. This is the common definition of secure com-
putation used in cryptography1 (we refer the reader to cryp-
tographic literature, e.g. to [10, 12, 20], for an exact defini-
tion). Specifically, a definition of a task using a trusted party
involves the following elements:

1. Exact specification of the interaction of the trusted party
with the participants. This includes specification of what

the participants tell and what they learn from the trusted
party.

2. Exact specification of the internal computations of the
trusted party.

In support of the user’s high level view of the computation,
we provide our own high-level definition language called Se-
cure Function Definition Language (SFDL). SFDL is a pro-
cedural language that resembles a subset of Pascal or C, and
is tailored to our purpose. For convenience, a syntax-driven
GUI is provided that guides the program developer.

Once such a specification is given, a compiler generates
an intermediate level specification of the computation in the
form of a one-pass Boolean circuit. Whereas classical theory
on SFE was satisfied with the fact that it is provably possible
to reduce any function to a canonical Boolean representation,
we tackle for the first time actually automating the transfor-
mation, while keeping efficiency in mind.

The language used for describing the Boolean circuit is
named Secure Hardware Definition Language (SHDL). De-
veloping an SFDL-to-SHDL compiler is a novel endeavor in
itself, because unlike common hardware compilers, our com-
piler may use no registers, no loops or goto’s, and moreover,
may use every gate only once. Its complete obliviousness
makes compiling even the most primitive operations like ar-
ray indexing (e.g., “a[i]”) a daunting task: it must create es-
sentially a multiplexer, such that all possible values of “i”
are hardwired into it. Thus, the SFDL-to-SHDL compiler in-
cludes many novel tricks for reducing the number of resulting
gates in the circuit, and for optimizing the use of wires. The
final component of Fairplay is a Bob/Alice pair of programs,
whose input is an SHDL circuit, which together carry a secure
computation protocol of the circuit in the manner suggested
by Yao. The entire computation structure of Fairplay is de-
picted in Figure 1.

Security. The main security property guaranteed by the
system is the equivalence to the specified trusted party. I.e.,
each user is guaranteed that whatever the other participant
does, including using completely different software for com-
municating with him, his security is assured to the same level
that the trusted party would have assured it. In particular, the
function is correctly computed on the reported values and no
information about the input of one party is leaked to the other
(beyond what is implied by the specified output). Note, how-
ever, that, in principle, there is no way to “force” any party
what to tell the trusted party (e.g. force it to report its “true”
input), and that in two-party secure computation it is also im-
possible to prevent one party from terminating the protocol
prematurely, before the other party learns its output – this is
detected, but cannot be recovered from.

The Fairplay system provides the guarantee above based
on common and widely accepted cryptographic assumptions.



We describe the security properties of Fairplay in more detail
in Section 5. The level of security provided is asymmetric:
Alice can only cheat with negligible probability, but Bob can
potentially cheat with probability ���, where� is a param-
eter that can be chosen at will and there is an overhead that is
proportional to�.2

Summary of Contributions. We contribute a generic two-
party computation engine that we make available for use by
the security community. The tool is available at Fairplay’s
web-site [28]. It includes a specially tailored high level de-
scription language (SFDL) that describes a secure computa-
tion in the trusted third-party model. It tackles the challenge
of efficient compilation of SFDL into a one-pass Boolean cir-
cuit. And it provides a Bob/Alice implementation that se-
curely evaluates the circuit.

Fairplay enables experimenting with mechanisms related
to secure function evaluation, whether by replacing a compo-
nent of it, building on top of it, or interacting with it. Our pre-
liminary investigation introduces results concerning the over-
all cost of the SFE paradigm in today’s Internet settings; it
presents a breakdown of costs into components and bottle-
necks; and it examines various enhancements that were intro-
duced in the literature.

2 System Overview

We start by a general overview of the computation being
performed, which also allows us to present the main enti-
ties and components of our system. Fairplay comprises two
applications that are activated by the two players, who want
to engage in two-party secure function evaluation (SFE). By
convention we call these players/applications Bob and Alice.
Prior to executing the SFE protocol, the two players must de-
fine and coordinate the function-to-be-evaluated. In order to
do that, they use the Secure Function Definition Language
(SFDL), a language which was designed especially for this
purpose. The SFDL is a high-level programming language,
which allows humans to specify the function-to-be-evaluated
in the form of a computer program. Another language that
the system uses is the Secure Hardware Definition Language
(SHDL). The SHDL is a low-level language designed for
specifying Boolean circuits. The SFE computation is done
in several stages as shown in Figure 1.

� An SFDL program file is written by the users using an
SFDL editor.

� The SFDL program is translated by an SFDL compiler
to an SHDL circuit file. The circuit is optimized before
it is passed on to the next stage.

� The SHDL circuit is parsed. The resulting circuit is in
the form of a Java object.

� Bob constructs � garbled/encrypted circuits and sends
them to Alice. Alice randomly chooses one of the cir-
cuits that will be evaluated.

� Bob exposes the secrets of the other � � � gar-
bled/encrypted circuits, and Alice verifies them against
her reference circuit.

� Bob specifies his inputs, and sends them to Alice in
garbled form. Alice inserts Bob’s inputs in the gar-
bled/encrypted circuit that she chose to evaluate.

� Alice specifies her inputs, and then Bob and Alice en-
gage in Oblivious Transfers (OTs) in order for Alice to
receive her inputs (in garbled form) from Bob, while
Bob learns nothing about Alice’s inputs.

� Alice evaluates the chosen circuit, finds the garbled out-
puts of both her and Bob, and sends the relevant garbled
outputs to Bob.

� Each party interprets his/her garbled outputs and prints
the results.

3 The SFDL, SHDL and their Compiler

3.1 Motivation

The secure function evaluation protocol requires that the
function to be evaluated be given as a Boolean circuit. De-
signers, however, will desire the function to be given in
a more convenient high-level form. In the context of se-
cure protocols, this is even more important than the strong
usual reasons for writing in high-level programming lan-
guages. The starting point of any attempt of security is a
clear, formal, and easily-understandable definition of the re-
quirements. Such clarity of definition is almost impossible,
for humans, using low-level formalisms such as Boolean cir-
cuits. Clear high-level languages are needed.

The compiler will thus accept a function written in a high-
level programming language and compile it into a Boolean
circuit that evaluates the same function. In our case the com-
piler compiles an SFDL program into an SHDL circuit. In
addition to bridging the semantic gap between high and low
level languages, as done by every compiler, a compiler into
hardware has to bridge another semantic gap: that of obliv-
iousness. Boolean circuits are oblivious – they perform the
same sequence of operations independently of the input (i.e.
compute the values of the gates one after the other). Normal
high-level languages change their flow of control according
to the input: they execute statements conditionally, loop for a
variable number of steps, etc.

This semantic gap is not a technicality, but rather the cen-
tral issue in hardware compilers. On one hand this is one
of the key reasons why it is humanly difficult to design ef-
ficient Boolean circuits. On the other hand, the key reason
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Figure 1: Computation overview

why Boolean circuits were used as the computation model
for secure function evaluation protocols (rather than, e.g., a
Turing machine) is their obliviousness. Non-oblivious com-
putations would seem to leak information from the very iden-
tity of the operation being simulated (existing solutions for
running RAM based computations obliviously are quite com-
plex [22]).

There do exist “hardware compilers” that compile a high-
level language into low level Boolean circuits. These hard-
ware compilers are used for actual hardware construction, and
serve to ease the development effort. Most commonly used
are the high level hardware description languages VHDL
[14] and Verilog [37] that do not “look” like “normal” pro-
gramming languages. There are also many compilers that
do aim to use languages that “look” like usual program-
ming languages, e.g. the C programming language (see e.g.
[9, 18, 33, 38, 19]). There are some similarities and some dif-
ferences between the goals of such languages and our goals.

The similarities are concerned with issues like making condi-
tional execution oblivious and the “single assignment” issue
– each hardware bit can only be assigned a value once, but
software allows re-assigning values, e.g. in statement like
x=x+1.

The main difference comes from the required output. In
our case the output should be a “theoretician’s Boolean cir-
cuit”: purely combinatorial, with no sequential logic. Com-
pilers into real hardware are actually mostly concerned with
the use (and re-use) of registers. Thus, for example, consider
a command like for i = 1 to 16 do sum = sum + a[i]. Our
compiler should produce a circuit that has 16 copies of the
addition circuit. Real hardware compilers would produce a
circuit with a single register (sum) and a single addition cir-
cuit, where in each of the 16 clock cycles, one value a[i] is
added to the register’s contents. Additionally, our optimiza-
tion metric is very simple: the number of gates (weighed by
the the gate size). We are not bound at all by technological



restrictions such as FPGA structure, delay considerations, or
wiring issues.

3.2 The Secure Function Definition Language
(SFDL)

Let us begin with the simple example of the Millionaires’
problem:

program Millionaires {
type int = Int<4>; // 4-bit integer
type AliceInput = int;
type BobInput = int;
type AliceOutput = Boolean;
type BobOutput = Boolean;
type Output = struct {

AliceOutput alice, BobOutput bob};
type Input = struct {

AliceInput alice, BobInput bob};

function Output out(Input inp) {
out.alice = inp.alice > inp.bob;
out.bob = inp.bob > inp.alice;

}
}

First, note that the syntax is quite conventional, borrowing
heavily from the C and Pascal programming languages. Now,
let us look at some of the main ingredients of this program
as well as the language in general. A full description of the
language may be found in Appendix A.

Type system. The SFDL supports a full type system. The
primitive types are Boolean, integer, and enumerated. For
maximum efficiency and since there is no pre-wired hardware
word size, integers may be declared to be of any bit-length
and are always signed 2’s-complement. Similarly, enumer-
ated types are allocated the minimal number of required bits.
Structures and arrays create more complex types from sim-
pler ones. Structure entries are accessed using dot-notation,
s.f, and array entries using the standard array notation a[i].
Access to arrays has a potential for non-obliviousness if the
index is not a constant expression. This is handled by the
compiler, but users should be aware of the high price of such
access. Pointers do not exist – this is in order to maintain
obliviousness. Beyond their usual role as defining variable
types, the type system is used to formalize the input and out-
put of the function to be evaluated. The special types Ali-
ceInput, AliceOutput, BobInput, BobOutput, must be defined
in every program, specifying the respective input and output
types of the two players. The types Input and Output are al-
ways defined to be structures encapsulating the inputs (resp.
outputs) of both players.

Program Structure and Functions. An SFDL program con-
sists of a sequence of functions (as in C, no nesting is allowed)

preceded by declarations of global constants and types. Func-
tions receive parameters and return values using the Pascal-
like syntax of assignment to a variable whose name is identi-
cal to the function name. As in Pascal, a function must pre-
cede any function that calls it. Unlike Pascal, no “forward”
clause exists, and no recursion is allowed. The lack of recur-
sion is critical in order to maintain obliviousness. Functions
may define and use local variables; in the current implemen-
tation we forbid global variables. The last function in the
program is the one computing the desired output from the in-
puts. By convention it is named output. It accepts a single
parameter of type Input and produces the result of type Out-
put.

Assignments and expressions. Expressions use the stan-
dard notations: they combine constants, variables (includ-
ing, recursively, array entries and structure items), and func-
tion calls using operators and, optionally, parenthesis. The
allowed operators include arithmetic addition and subtrac-
tion, Boolean logical operators (bitwise, for integers), and the
standard comparison operators. Due to their cost, multiplica-
tion and division are not provided as primitive operators, but
rather should be implemented as functions. Data types of dif-
ferent widths may be combined, and sign-extension is used.

Loops and Conditional Execution. The SFDL has the stan-
dard if-then and if-then-else statements. It should be noted
that conditional execution is not oblivious, and thus the com-
piler generates hardware that always computes both sides
of the branch. General loops are not oblivious and are not
possible in the language. The language does provide a for-
loop where the number of iterations is known in advance (a
compile-time constant).

3.3 The compiler

The compiler reads the input program written in SFDL, and
performs a sequence of transformations on it. In the end of the
sequence of transformations, a data structure that corresponds
to the hardware is obtained, and is then output in SHDL for-
mat. The following example shows part of the SHDL output
produced for the Millionaires’ problem above. Each line in
the SHDL output file specifies a “wire” in the generated cir-
cuit that is either an input bit or a Boolean gate with given
truth-table and input wires. This format is in a verbose form,
in particular containing comments (automatically generated,
but ignored by the secure evaluation protocols).

0 input //output$input.bob$0
1 input //output$input.bob$1
2 input //output$input.bob$2
3 input //output$input.bob$3
4 input //output$input.alice$0
5 input //output$input.alice$1
6 input //output$input.alice$2



7 input //output$input.alice$3
8 gate arity 2 table [1 0 0 0]

inputs [4 5]
9 gate arity 2 table [0 1 1 0]

inputs [4 5]
10 gate arity 2 table [0 1 0 0]

inputs [8 6]
11 gate arity 2 table [1 0 0 1]

inputs [8 6]
12 gate arity 2 table [1 0 0 1]

inputs [10 7]
13 gate arity 2 table [0 0 0 1]

inputs [4 0]
14 gate arity 3 table [0 0 0 1 0 1 1 1]

inputs [13 9 1]
15 gate arity 3 table [0 0 0 1 0 1 1 1]

inputs [14 11 2]
16 gate arity 2 table [0 1 1 0]

inputs [12 3]
17 gate arity 2 table [0 1 1 0]

inputs [15 16]
18 output gate arity 1 table [0 1]

inputs [17] //output$output.alice$0
...

Additionally, the compiler outputs another file that gives
formatting instructions enabling the secure function evalua-
tion protocol to input and output values in a convenient user-
friendly format. E.g. in the SHDL circuit produced above the
first 4 wires (numbered 0–3) while treated as just 4 arbitrary
bits inside the circuit, should be read from the user as an inte-
ger. The following example is produced for the Millionaires’
problem above:

Bob input integer "input.bob"
[0 1 2 3]

Alice input integer "input.alice"
[4 5 6 7]

Alice output integer "output.alice" [18]
Bob output integer "output.bob" [29]

Here is a short description of the sequence of steps per-
formed by the compiler:

1. Parsing. Simple syntactic analysis and parsing, resulting
in a memory-resident data structure. Due to the simplicity of
the language we have not used any compiler-compiler tools.

2. Function inlining and loop unfolding. all function
calls are treated as macros and simply inlined where they are
called. All for-loops are simply unfolded (note that the num-
ber of iterations is a compile-time constant). These two trans-
formations may seem quite inefficient at first sight but that is
not the case: they are absolutely required in order to maintain
obliviousness.

3. Transformation into single-bit operations. Every com-
mand that deals with multi-bit values is transformed into a
sequence of single-bit operations. In the simplest case, an
assignment of the form a=b where � and 	 are 4-bit inte-
gers is converted into the four single-bit assignments �� �
	�� �� � 	�� �� � 	�� �� � 	�. In the case of expres-
sions, first a complex expression is transformed into a se-
quence of operations, e.g. � � 	 � 
 � � is converted into
�
�� � 	 � 
� � � �
�� � �. Then, each multi-bit oper-
ator is converted into its hardware implementation. E.g. an
operation � � 	 � 
, where 	 and 
 are 4-bit integers is con-
verted into a sequence of 4 ”full-adders”, implemented using
8 ternary gates.

4. Array access handling. Handling array indices that are
compile-time constants is simple: each array entry is treated
as a separate variable, and the array access logic is thus com-
pletely compile-time and incurs no hardware cost. Handling
array indices that are expressions must incur a significant
hardware cost due to the semantic gap that must be bridged.
In particular, every access to a single array entry results in
���� produced hardware gates, where� is the total array size.
An access to the value of an array entry, as in � � 		�
 is ob-
tained by constructing a multiplexor whose � inputs are the
entries of 	, and whose selection input bits are the bits of �.
Assigning a value to an array entry, as in �	�
 � 	, is obtained
essentially by using a demultiplexer. More precisely by us-
ing, in effect, the sequence of � if-commands that contain
only constant array access indices: if �� � �� then �	�
 � 	;
if �� � �� then �	�
 � 	; ...

5. Single variable assignment. Normal code commonly
assigns values to variables multiple times, as in � � 	 �

� ���� � � � � �. Hardware, does not allow this: each ”vari-
able”, actually, wire, is assigned a single value computed as
an obliviously known operation on other wires. One of the
main challenges of every hardware compiler is to eliminate
multiple assignments of values to variables, and to transform
them into single assignments. This issue has received much
attention in the literature (see e.g. work on SSA form [15]). It
seems that our algorithm for this problem is new and superior
to previous approaches. In particular, it runs in linear time as
long as the nesting depth of if statements in the program is
bound by a constant.

Let us first look at the simple case shown above � �
	 � 
� ���� � � � � �. The single assignment transformation
defines a new copy of the variable for each assignment: �� �
	�
� ���� �� � ����. Things get more complicated, when the
different assignments are interleaved with conditional execu-
tion, e.g. � � 	�
� if ��� then � � ��� else � � ���� In this
case, we must create new copies of � for each branch, and an
additional copy combining them together after the loop ends:
�� � 	 � 
� �� � �� � �� �� � �� � �� �� � ���� 
 ��,
where the last assignment uses the C-language ”?:” opera-
tor notation, which in hardware is a simple multiplexor. Note



also that this transformation has eliminated the ”if” statement,
yielding an oblivious circuit. The algorithm for the general
case is of independent interest and is described in the next
subsection.

6. Optimization. At this point we have obtained an in-
memory image of a Boolean circuit. This circuit is now opti-
mized, i.e., its size is reduced. The optimization step is cru-
cial, often reducing the size of the circuit by an order of mag-
nitude. The optimization is done in linear time, and has three
components:

� Peekhole optimization: local simplifications of code,
e.g. (x and true � x), (x or not x � true), etc.

� Duplicate code removal: a hash table of all values com-
puted in the circuit is kept. If some value is computed
twice, then one of the duplicates is removed and replaced
with direct access to the other wire.

� Dead code elimination.

Peekhole optimization and duplicate removal are done in a
single pass in topological order over the circuit. Dead code
elimination is then done in an additional single pass in reverse
topological order.

3.4 The single assignment algorithm

The input to this algorithm is code that contains assignment
statements, where each variable may be assigned a value mul-
tiple times and (possibly nested) if statements. The output is
straight line code where each variables is assigned a value
only once.

Data structure. Our basic data structure is a stack of hash
tables. It maintains a running version number for each iden-
tifier. It supports the following operations:

� new(id): increases the version number of this identifier
(and returns the new version number). The first time an
id is declared, its version number is assigned to 1.

� get(id): returns the current version number of the iden-
tifier.

� push-scope(): starts a new version scope for all iden-
tifiers. The version numbers of all identifiers are ini-
tialized to the current version numbers, but all further
�
����� commands will only affect the new scope.

� pop-scope(): ends the current version scope. All version
numbers of all identifiers are reset to their value in the
previous scope.

� enum-scope(): enumerate all the variables in the current
scope.

The implementation uses a new hash table for each ver-
sion scope. A �
��� command updates the version number
in the current scope. A �
��� command traverses the stack of
hash tables (from the most recent backwards) until it finds an
instance of the desired identifier. Its running time is propor-
tional to the stack depth.

Algorithm. Assume that the input is a sequence of state-
ments �������. For ease of exposition, let us assume that all
assignment commands involve two variables on the RHS,
and that all if-statements contain no else clauses. (An ”if ���
then � else �” command is equivalent to ”if ��� then �; if
�������� then �”.) The algorithm is now given by:

For � � ���� do �
if �� is a statement of the form
" � � ��	� 
� " then �
� � get �	�
� � get �
�
� � new ���
output: " �� � ��	�� 
�� "

�
if �� is a statement of the form
" ����� then ��������� " then �

push-scope()
recursively process ���������
Let � � enum-scope()
For each � � � do
�� � get ���

pop-scope()
For each � � � do �
� � get ���
� � ��
� � new ���
output: " �� � ���� 
 �� "

�
�

�

4 Bob-Alice Two-Party SFE

This section describes the specific two-party SFE protocol
that was implemented in Fairplay, based on the protocol sug-
gested by Yao in his seminal work that introduced the notion
of secure function evaluation [39]. We start with a general
overview and then describe in detail how Bob constructs gar-
bled circuits and how Alice evaluates one. Finally we discuss
the oblivious transfer (OT) variants that were implemented
thus far. We do not prove here the security of the protocol,
since it was mostly borrowed from existing theoretical con-
structions (however, Section 5 states the security guarantees
of the protocol, describes the reasoning for the choice of the
specific cryptographic operations that we use, and suggests
some variants of the current protocol).



4.1 General overview

Our SFE computation is given as input a Boolean circuit �
made of gates and wires, described using SHDL. Then Alice
and Bob interact in order to evaluate � securely. The version
of Yao’s protocol that we implemented requires a single OT
per each input wire of �. In this version Bob constructs the
circuit �, and converts it into a garbled circuit. The garbled
circuit is transferred to Alice. Then Bob and Alice execute
an OT once per each input wire. After this step Alice evalu-
ates the circuit independently without further interaction with
Bob.

Thwarting malicious behavior by Alice is guaranteed by
Yao’s protocol and is based on the security of the symmet-
ric function used for encoding the secret (SHA-1, which is
modeled, for this purpose, as a pseudo-random function) and
on the security of the OT protocol against malicious behav-
ior. The same properties also prevent malicious behavior of
Bob, if we can guarantee the correctness of the circuit encod-
ing that he constructs. This last property was implemented
using a cut-and-choose technique. Specifically, Bob sends�
garbled circuits to Alice, and Alice randomly chooses one cir-
cuit that will be evaluated. Bob must then reveal the secrets
associated with the circuits that were not chosen by Alice for
evaluation. Alice verifies that these � � � circuits indeed
represent the function � , by comparing them to a reference
circuit that she constructed herself. The two parties then eval-
uate the circuit Alice has chosen. This method allows to catch
a cheating Bob with probability �� ���. In real-world sce-
narios, where cheating leads to bad reputation, this may be
enough. We leave implementation of more complex cut-and-
choose techniques for future enhancements. 3

4.2 Circuit preparation and evaluation

This section describes how Bob converts the Boolean circuit
� into a garbled circuit, and how Alice evaluates that garbled
circuit.

Circuit preparation. We use the notation��� � � �� ��� ��
� to denote all the wires that compose the circuit �. All the
gates in SHDL circuits have a single Boolean output. The
number of inputs into a gate can be either 1, 2 or 3 (SHDL it-
self allows more inputs, but the compiler produces only unary,
binary or ternary gates). For simplicity of exposition, in the
description below, we focus only on binary gates. The con-
version of � into a garbled circuit works as follows.

1. Bob assigns to each wire �� � � two random �-bit
strings ���� �

�

� (� is a security parameter that was set to
��). The string ��� represents the bit � for��. The string
��� represents the bit � for��. Bob also assigns to each
wire �� � � a random binary permutation (i.e., a bit)
��, and appends it to the pair ���� �

�

� as follows: ��

� �

� � ���
� � ���
� � ���
� � ���
� � ���

Gate �

�

��

�

��

�

��

Figure 2: A gate in a circuit

������� 	 ���� �
�

� � ������� 	 ���. We let ��

�� �
�

� denote
the final result.

2. For each gate � � � whose output wire is�� and whose
input wires are����� (see Figure 2)

(a) The original truth table of � consists of four 0/1
entries. Bob constructs the Garbled-Truth-Table
( !! ) of � by replacing every � or � in the truth-
table with ��

� or ��

�, respectively.

(b) Bob constructs the Encrypted-Garbled-Truth-
Table (" !! ) of � in the following way. For entry
��� �� in �’s !! , define �� � �	��� �� � �	�� .
The entry is encrypted using ��� � �

	
� as

encryption-keys and �� ��� �� as an IV:
" !! 	�� �
 � "�
������

�

�

�

�

�
��
	�� !! 	�� �
�.

The encryption is done by hashing ��� ������
�����

and �	� ������
����� using SHA-1, and XORing the

two results to the plaintext (see Section 5 for
explanations).

(c) Bob constructs the Permuted-Encrypted-Garbled-
Truth-Table (#" !! ) of � by swapping the en-
tries in �’s " !! based on the permutation bits
assigned to �’s input wires, namely ��� �� (the role
of these permutations is to make the position of a
certain string in a #" !! meaningless). I.e., if
�� � � then the first two entries of the table are
swapped with the last two entries. If �� � � then
the first and third entries are swapped with the sec-
ond and fourth entries.

(d) For each wire which carries a bit of Alice’s out-
put, Bob sends an appropriate translation-table that
allows Alice to interpret the circuit’s output from
the garbled value of the wire. Namely, for ev-
ery output wire � Bob sends a table of the form

�$����� ��� �$����� ���, where $ is a collision
resistant hash function, which we implemented as
SHA-1.



Interaction. Initially, Bob sends to Alice� garbled circuits
as well as commitments to his garbled inputs to each circuit.
Out of these, Alice chooses at random� � � circuits which
are opened by Bob to prove that the circuits were prepared
properly.4 Bob then opens the commitments to the garbled
strings that represent his input bits of the remaining unopened
circuit. Note that Alice cannot interpret these strings back to
Bob’s input bits, because the circuit is garbled. Alice then
uses oblivious transfer (OT) in order to obtain from Bob the
garbled strings that match her input wires. The OT protocol
that was implemented is discussed in the next subsection. For
now assume that for each input bit Alice obtains the corre-
sponding garbled string.

Circuit evaluation. Alice proceeds to evaluate the garbled
circuit gate by gate. Let � be a specific garbled gate whose
output wire is�� and whose input strings are ��� �� . Let the
least significant bits of ��� �� be �� � and the rest of the bits
be ��� �� respectively. For each such gate:

1. Alice uses �� � as indices into an entry to be decrypted
in �’s #" !! .

2. Alice uses ��� �� as decryption-keys, and
������� as an IV. Namely, Alice sets �� �
%

������
�� 
�
�
	�#" !! 	�� �
�. The decryp-
tion is done by hashing ����������� and �� ��������� using
SHA-1, and XORing the two results to the ciphertext.

Throughout the evaluation all that Alice obtains are garbled
strings. These do not leak information on the values of the
bits flowing through the circuit. When Alice finds the garbled
values of the output gates she uses the translation tables to
interpret the circuit’s true output. As for Bob’s output, Alice
sends him the garbled values of his output wires. Bob asso-
ciates them with the corresponding 0 or 1 values. (Note that
in the case of a wire that carries an output bit which should
be revealed to Bob alone, Alice cannot decipher the value, or
change it without being detected by Bob. In the case of a wire
that carries an output bit which is revealed to both Bob and
Alice, Alice can, of course, decrypt the value but she cannot
change it without finding a collision in the hash function.)

Malicious vs. Semi-honest parties. If the parties are as-
sumed to be semi-honest (i.e. follow the protocol) then there
is no need for using cut-and-choose methods for verifying the
circuits constructed by Bob, and we can set � � �. The OT
protocol, too, can be simplified, since the current implemen-
tation is secure against malicious parties.5

4.3 Oblivious Transfer

Two OT variants were implemented thus far (the system can
be easily extended to employ more variants). Both variants

are based on the Diffie-Hellman problem (and are imple-
mented over a group ��, which is a sub-group of prime or-
der & of ��

�, where � is prime and &�� � �). The first one
is the 1-out-of-2 oblivious transfer (�! �

�
) protocol due to

Bellare and Micali [6], which was adapted to using random
oracles [7]. The second protocol, which was proposed by
Naor and Pinkas in [30], is an optimization of the first one,
that uses the same �� ��� � value for multiple OT execu-
tions (� is a generator of the group ��, � is a random expo-
nent). A detailed description of both protocols can be found
in [30]. Both these OT protocols are secure in the random
oracle model and were implemented using the SHA-1 hash
function. (There are constant-round OT protocols secure in
the standard model [2, 30]. The SFE application requires
multiple concurrent invocations of these protocols, but on the
other hand it is only required that the SFE implementation,
and not necessarily each OT invocation, provide both privacy
and correctness.)

5 Cryptographic Background

This section describes the rationale behind the choice of spe-
cific cryptographic operations for Fairplay and suggests sev-
eral additional variants. We do not provide here proofs of the
correctness and security of the implementation, as it is mostly
based on existing constructions.

The protocol we implemented provides security guarantees
which depend on the following three assumptions:

1. SHA-1 is modeled as a random oracle.

2. The oblivious transfer protocol is secure (the security
of the OT protocol can be based on the computational
Diffie-Hellman assumption [2, 30], but we use random-
oracle based protocols which are more efficient).

3. Alice does not terminate the protocol before sending
Bob’s output to him.

We get the following guarantees:

� Bob is guaranteed that an interaction with a malicious
Alice is not different than an interaction with the trusted
third party, except for a negligible error probability.

� Alice has the same guarantee with relation to Bob, with
error probability of ���.

Note that these guarantees means that (1) a malicious party
cannot learn more information about the other party’s input
than it can learn in the trusted party model, and (2) a mali-
cious party cannot change the computed function. Also, if we
are assured that Bob does not change the circuit he provides
to Alice then his cheating probability is also negligible.



Garbling the circuit. The basic symmetric cryptographic
function that we use is SHA-1. We preferred it to using a
block cipher (such as AES) since it supports a variable input
length. The encoding of the circuit (garbling) can be imple-
mented using a pseudo-random function (as is described in
detail, for example, in [31]), where the output of the function
is used as a pad that masks the values in the table represent-
ing a gate in the circuit. We use the masking values SHA-
1�������������, SHA-1��� ���������� for entry ��� �� of the ta-
ble of gate number �, whose input wires are � and �. (Note
that wires � and � could be input into multiple gates.) The un-
derlying security assumption is that SHA-1 is pseudo-random
function keyed by �� or �� and applied to other parameters.

OT. The OT protocols are based on the random oracle
model and the computational Diffie-Hellman assumption. Al-
ternative two-round OT protocols that are secure in the stan-
dard model and use only ���� exponentiations were de-
scribed in [30, 2]. We preferred not to use them in order to
reduce the number of exponentiations.

Cut-and-choose. Bob commits to his garbled inputs before
the cut-and-choose step. This is done in order to prevent him
from choosing his input based on Alice’s choices in this step.
We leave it for future work to let Alice choose more than one
circuit for evaluation. This will reduce the cheating probabil-
ity of Bob to be exponentially small in the number of circuits
that are evaluated, but implementing this variant requires Bob
to prove that he provides the same input to all circuits, and this
step incurs additional overhead. (An alternative method for
verifying the garbled circuit constructed by Bob is to require
him to prove, in zero-knowledge, that the tables are correct.
To the best of our knowledge, this approach requires an even
higher overhead.)

Bob’s output. The protocol provides Alice with the garbled
values of Bob’s output wires. If the value of an output wire
should become known only to Bob (and not to Alice) then
she receives no information about the relationship between
actual and garbled values of this wire. If the output is used by
both Bob and Alice, she receives hash values of the garbled
values corresponding to 0 and to 1. However, she is not able
to provide Bob with a garbled value that corresponds to a
different output than the one she computed, since this would
mean that she can invert the hash function.

6 Experimental results

The first, immediate contribution of a system such as Fairplay
is that it can provide answers to very basic, concrete questions
like:

� How much time does it take to execute the two-party
SFE protocol for the quintessential Millionaires’ prob-
lem?

� What would be the time-penalty if the two tycoons in
question were actually Billionaires and not just Million-
aires?

The experiments that we conducted using our system gave
a very definite answer, that even the tougher Billionaires’
problem (i.e., using 32 bit inputs) can be solved in very rea-
sonable time. It took our system only 1.25 seconds to solve
the Billionaires’ problem using fast communication, and 4.01
seconds when communication was slow. More generally, in
this paper we report results for four functions, which pro-
duced circuits ranging in size from tens of gates to thousands
of gates. A summary of the various size parameters of these
four functions is shown in Table 1 (their SFDL source code
can be found in Fairplay’s web-site [28]).

Function Number of circuit gates
Total Inputs Alice inputs

AND �� �� �
Billionaires ��� �� ��
KDS ���� ��� �
Median ���� ��� ���

Table 1: The four functions

The details of the four functions are as follows:

� AND - performs bit-wise AND on two registers. The
input size for both Alice and Bob is 8 bits. Total circuit
size is 32 gates, out of which 16 are inputs and 16 are
outputs.

� Billionaires - compares two integers. The input size for
both Alice and Bob is 32 bits. Total circuit size is 254
gates, out of which 64 are inputs and 2 are outputs.

� Keyed Database Search (KDS) - Bob has a database of
16 items, each item is keyed by a 6-bit key and com-
prises of 24 data bits. Alice privately retrieves the data
of one item by specifying its key. The input size for Bob
is 480 bits and for Alice 6 bits. Total circuit size is 1229
gates, out of which 486 are inputs and 24 are outputs.

� Median - finds the median of two sorted arrays. The
input for both Alice and Bob are ten 16-bit numbers.
Total circuit size is 4383 gates, out of which 320 are
inputs and 32 are outputs.

The AND function was chosen as an example of the sim-
plest possible circuit, whose size is of the same order as the
number of its inputs. The KDS function demonstrates a cir-
cuit in which the size of Alice’s input (which defines the num-
ber of OTs) is much smaller than either the number of Bob’s



Function LAN WAN
IPCG CC OTs EV EET (sec) IPCG CC OTs EV EET (sec)

AND 1.5% 18.8% 79.5% 0.2% ���� 0.2% 58.4% 41.4% 0.0% ����
Billionaires 3.2% 5.4% 91.1% 0.3% ���� 0.8% 45.2% 53.9% 0.1% ����
KDS 40.4% 2.8% 54.1% 2.7% ���� 5.9% 64.3% 29.4% 0.4% ����
Median 13.2% 7.2% 78.7% 0.9% ���� 4.7% 45.8% 49.2% 0.3% �����

Table 2: Elapsed execution times and their breakdown into sub-tasks

inputs or the number of gates. The median function demon-
strates a circuit whose size is much greater than the number
of inputs.

Communication vs. computation. Another important
contribution of a working system is that it enables a system-
atic, realistic investigation of the relative cost of its various
ingredients. This can be done by utilizing profiling tools, and
by performing supervised experiments, in which the cost of
the different sub-components is measured in isolation. One
specific question that we found interesting in this area is the
following: what is the relative cost of the public key opera-
tions required by the two-party SFE protocol? Since this rel-
ative cost is affected by the cost of communication, and since
communication delays vary dramatically in different environ-
ments, we conducted our experiments in two extreme settings
- LAN and WAN. The LAN’s latency is 0.4 ms, and its effec-
tive throughput is 617.8 MBPS (Mega bit per second). The
WAN’s latency is 237.0 ms, and its effective throughput is
1.06 MBPS. By activating our system on the four functions
described above, and profiling it under the LAN/WAN envi-
ronments, we discovered that the public key operations were
responsible for 27%-77% of the total delay in the LAN set-
ting, while in the WAN setting the relative cost of the public
key operations was only 9%-42%. These results suggest that,
at least for some interesting functions, the relative cost of the
communication is rather significant, especially in a WAN en-
vironment where communication is slow. In light of this, we
also calculated the slowdown factor caused by moving from
LAN to WAN, which was found to be at least 2.34 and at
most 6.89.

Communication optimization using batching. Commu-
nication batching means that instead of sending � big inte-
gers (associated with different OTs) in � separate messages,
we aggregate them together and send them in one big mes-
sage. It is useful because of the relatively large constant over-
head associated with any message being sent regardless of
its size, and also due to internal implementation details of
TCP/IP. By implementing and measuring the performance of
two variants of the SFE protocol, with and without communi-
cation batching, we were able to assess its contribution. The
observed speedup factors due to communication batching in a
LAN setting were between 1.89-2.72, while in a WAN setting

they were between 2.11-8.75.

OT optimization. We have also implemented an optimiza-
tion technique for OT that was proposed by Naor and Pinkas
in [30], in which the sender uses the same value of � � ��� �
for multiple OTs, improving both computation and commu-
nication. The maximum speedup factor of this optimization
method that was observed in our system was 1.32.

There are many additional optimization techniques that
may be considered, implemented and tested (e.g., turning
multiple 1-out-of-2 OTs to a single 1-out-of-n OT [30], or us-
ing computation batching of multiple modular inverses). This
is an area for future research (see Section 8).

We conclude this section by presenting Table 2. This table
shows the elapsed execution times required for the aforemen-
tioned functions in both LAN and WAN settings, and their
breakdown into four main sub-tasks. These sub-tasks are:
IPCG - initializations, parsing and circuit garbling, CC - cir-
cuits communication, OTs - Oblivious Transfers, EV - circuit
evaluation. (Note that the cost of the OTs includes contribu-
tions from both calculating public key operations, and com-
municating their results back and forth.) The results shown
in Table 2 were obtained using the most optimized method
currently available in our system (namely, communication
batching and Naor-Pinkas �� optimization with no communi-
cation/computation tradeoff). The EET columns present the
elapsed execution time (in seconds), which was required for
Alice to execute the entire two-party SFE protocol excluding
SFDL-to-SHDL compilation.6 The number of garbled cir-
cuits for the cut-and-choose algorithm was set to� � �, and
the size of the DL parameters �� & was 1024 and 160 bits,
respectively. Both Alice and Bob used Intel 2.4 GHz Linux
machines. The system was implemented in Java, and it used
the TCP/IP protocol for communication via Java sockets. The
measurements were taken as the average of ��� repetitions
(�� for the Median function) of the protocol. All iterations
used a single TCP/IP connection, which was established in
the beginning.

Part of the future work includes a more fine grained anal-
ysis of the performance. Namely, expressing the expected
execution time as a function of the number of OTs (Alice’s
input bits), the number of gates, and the security parameter
�.



7 Related work

There are very few previous actual implementations of secure
computation, and even fewer automated compilers that gen-
erate an implementation of a secure protocol from a program
description in a higher level language.

Kühne implemented a translator that takes a trusted-
party specification of a multi-party protocol and generates
a specification for running the protocol using the BGW
paradigm [25]. (This implementation is based on the spe-
cific construction of Hirt and Maurer [23].) However, that
project does not have an “evaluator” part, which performs a
distributed implementation of the resulting BGW protocol.

MacKenzie et al. [27] implemented a compiler that auto-
matically generates protocols for secure two-party computa-
tion that use arithmetic functions over groups and fields of
special form. The compiler receives a specification of a pro-
tocol that uses a secret key, e.g., for signature generation or
for decryption, and implements a threshold crypto protocol
where the key is shared between two parties and only the two
of them together can perform the protocol. The key is gen-
erated by a TTP and is given to the parties. Compared to
Fairplay, this is a compiler for a restricted but important class
of functions, which is particularly suitable for applications
where the secret key has to be closely guarded using thresh-
old cryptography. In principle this type of functions can be
implemented by a Boolean circuit, but the result would be an
overwhelmingly large circuit.

An example of an automated security toolkit in a different
domain is AGVI, a toolkit for Automatic Generation, Verifi-
cation, and Implementation of Security Protocols [36]. AGVI
receives as input a system specification and security require-
ments, and automatically finds protocols for the specific ap-
plication, proves their correctness (using efficient search of a
space representing the protocol execution), and implements
them in Java.

TEP [3] is a secure multi-party computation system that
employs a trusted third party. The trusted platform co-joins
participants in a joint computation, passing authenticated in-
formation among participants over guarded communication
channels. TEP users need to annotate their program with in-
formation flow labels in order to automatically verify that no
information on any private data is leaked through the TEP
channels to other participants. In comparison, our system
does not employ a TTP, and does not require information flow
labels by the user.

The secure program partitioning technique of [40] takes a
user program written in a security-typed language, and auto-
matically provides a distributed partitioning of the program.
The user annotated program contains static information flow
labels that specify which program components may use what
data and how. An automated compiler splits the program to
run on heterogeneously trusted hosts. Compared with their
approach, the secure program partitioning is beneficial only

for programs that naturally break into communicating com-
ponents, in a manner dictated by the user’s annotation.

8 Future Work

The current implementation of the secure two-party compu-
tation system can be extended in many ways.

Improving the performance. The elapsed execution time
is a function of the communication delay and bandwidth, and
of the processing time. Ideally the network and the proces-
sor should run in parallel, and none of them should be idle
waiting for the other one to finish its job. The current imple-
mentation does not perform this optimization.

The main computational overhead is incurred by running
invocations of the oblivious transfer protocol. It would be
interesting to explore deployment of further recent enhance-
ments of OT, such as extending a small number of OTs into
a large number of OTs using symmetric cryptographic opera-
tions alone [24], or using OT variants which are based on the
hardness of breaking RSA, rather than the DDH assumption.

Security against malicious parties. The basic SFE proto-
col of Section 4 provides a weak security against malicious
parties. Namely, the cut-and-choose method guarantees with
probability ��� that the circuit that Bob prepares is correct.
Some additional care must be taken if we want to reduce
Bob’s cheating probability to be exponentially small in �
(see, e.g., [34]).

Fair termination. No implementation can prevent a mali-
cious party from aborting the protocol prematurely (e.g after
learning its output and before the other party learns its out-
put).7 Although there is no perfect solution for this issue and
existing solutions are quite complex, some solutions can be
implemented (e.g. [34]). We are currently extending our sys-
tem with fair termination mechanisms borrowing from [34].

Reactive secure computation. Reactive secure computa-
tion is an SFE which consists of several steps, where each step
operates based on inputs from the parties and a state informa-
tion that it receives from the previous step. For example, in
each step the parties could compare two numbers and receive
the result of the comparison, which they use to decide which
inputs to provide to the following step. In addition, secret
state information is communicated from round to round, and
the inputs to all rounds are used by the protocol for comput-
ing the output of the final round (but should otherwise remain
hidden from the parties). This scenario, as well as appro-
priate security definitions and constructions, was described
in [10, 12]. (A protocol that uses reactive computation for
securely computing the median, in the presence of malicious
parties, was presented in [1].) In order to implement secure
reactive computation each step should transfer a secret and
authenticated state-information string to the following step.



In the two-party case this property can be enforced using a
modified implementation of Yao’s protocol, see [1].

Integrating other SFE primitives. While the generic con-
struction of Yao can be used to implement any functionality,
more efficient constructions can be designed for specific tasks
(e.g. for bignum operations, computing comparisons or in-
tersections, evaluating polynomials, or querying a database).
A secure protocol for a more complex task can use a circuit
whose inputs are the results of specialized constructions (for
example, the protocol in [11] runs a circuit that computes
statistics based on the results of secure database queries, and
the protocol in [26] runs a circuit that uses uses the results of
oblivious polynomial evaluation).

Multi-party computation. The system we built imple-
ments secure computation between two parties. There is also
a large body of research on secure multi-party computation,
for either combinatorial or algebraic circuits, and using dif-
ferent trust assumptions (see e.g. [21, 8, 5]). A natural next
step is to implement the compilation paradigm in the multi-
party scenario. An additional open challenge is to devise fair
termination techniques for multiple participants.
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1An alternative definition uses simulation. The two definitions are iden-
tical if the parties are assumed to be semi-honest, but the trusted party defi-
nition is preferable for the case of malicious parties and for defining secure
composition of protocols.

2While in principle logarithmic overhead should suffice, it seems that this
is still not practical using current techniques.

3Bob’s cheating probability can be reduced to be exponentially small in
� if the protocol lets Alice check a constant fraction (e.g. ���) of the cir-
cuits that Bob constructed, evaluate the remaining (���) circuits and output
the majority result. In that case, however, the protocol must have additional,
measures for ensuring that Bob provides the same input to all the circuits
evaluated by Alice (see e.g. [34]).

4Care must be taken to ensure that a circuit can only be opened in a single
way. In our implementation this depends on the assumption that it is infeasi-
ble to find ����� �� �� such that ���������� � ����������, where
� is SHA-1.

5An OT protocol for semi-honest parties is very simple: Alice sends to
Bob two strings, one of them random and the other being the public key
corresponding to a private key of her choice. Bob encrypts each of the input
items using the corresponding string, and Alice is able to decrypt only one
of them.

6Compilation can and should be done by the two parties off-line.
7On the other hand, a premature termination of the protocol by one party

is detected by the other party, which in many scenarios can then take mea-
sures against the corrupt party. This is different than other types of malicious
activity which are not easily detected.
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A SFDL Overview

Programs in SFDL instruct a virtual ”trusted party” what to
do. The SFDL compiler compiles it into a ”Boolean circuit”
low level format that instructs a true client/server pair what to
do. When the client/server pair run the compiled form of the
program, they implement correctly and securely the fictional
trusted party.

A.1 Program Structure

program <program-name> {
<type declarations>
<function declarations>

}

In the first part of a program, the type declarations, the
programmer defines the data types that he will use. The data
types supported are Booleans, integers, structs (records), and
arrays. Of particular importance are the following data types
that must be defined in every program:

1. AliceInput - the data type of Alice’s input

2. BobInput - ditto for Bob

3. AliceOutput - the data type of Alice’s output

4. BobOutput - ditto for Bob

The data types Input and Output are automatically defined
for each program to be the structures of both inputs and both
outputs, respectively:

1. type Input = struct {
AliceInput alice, BobInput bob};

2. type Output = struct {
AliceOutput alice, BobOutput bob};

In the second part of the program, the function definitions,
the programmer defines a sequence of functions. Each func-
tion may call the previous ones (but not later ones nor itself).
The main functionality of the program is the evaluation of
the last function defined. This function must be called output
and must receive a single parameter of type Input and return
a value of type Output.

A.2 Type declarations

Constant definitions may appear in the 'type declarations(
segment. The syntax is standard, e.g.:

const numberOfBits = 16;

Data types can be defined using the type command. Here are
the supported data types:

1. Boolean: false/true

2. Integer types: e.g. Int<30> - a 30-bit integer (signed).
Any number of bits is allowed.

3. Enumerated types: e.g. enum �red, blue,
green�. Enumerated types are assigned the smallest
possible number of bits (in this case 2).

4. Structures: e.g. struct � Boolean ranked,
Int<7> level �

5. Arrays: e.g. Boolean[7] - has entries indexed 0 .. 6

New data types can be defined using the type statement:

1. type Short = Int<16>;

2. type Byte = Boolean[8];

3. type Void = struct ��;

4. type Color = enum �red, blue, green�;

5. type Pixel = struct �Color color,
Int<10>[2] coordinates�;

A.3 Function Declarations

Function Structure. The function header defines the num-
ber of parameters to the function, their types, and the return
data type. Function must always return a value. After the
header come local variable declarations, and finally the state-
ments themselves.

function <return data type>
<function name>
( <arg1 type> <arg1 name>, ... )

{
<var declarations>
<function body>

}

Function values are returned Pascal-style, by assigning a
value to a variable with the function’s name. E.g.:

function Int<9> double(Int<8> x) {
double = x + x;

}



Variable Declarations.

var <type> <var name>, <var name>,
..., <var name>;

For example:

1. var Int<10> xCoord, yCoord;

2. var Color[8] palette;

All variables are initialized to 0.

Expressions. Expressions are used for computing values.
They are used in assignment statements, to denote conditions,
to send arguments to functions, etc. Expressions are built
from atomic values using operations. The following are the
atomic values allowed:

1. A Boolean constant: false, true.

2. An integer constant: e.g. 34, -56, 0,
123456789123456789.

3. A variable name: e.g. i, price.

4. A field in a struct using x.y notation. (Here x is a struct,
and y is a name of a field defined in that struct.)

5. An array entry using x[i] notation. (Here x is an array
and i is an integer expression.)

The following operators are defined:

1. +,- : addition and subtraction (in 2’s complement). Ac-
cepts k-bit long integers and return a (k+1)-bit long re-
sult.

2. �� ����� 
 and, or, not, xor bitwise Boolean operations.
Accept k-bit long arguments and return k-bit long argu-
ments.

3. '�(���� (�� '�� � � : 2’s complement comparison
operators. Accept k-bit long arguments and return a 1-
bit result.

4. function call: e.g. f(x, y), where f is a previously defined
function and x, y, .. are arbitrary expressions that are
passed as parameters by value.

Narrow and wide operands may be combined in an oper-
ation, and the narrower value is always widened using sign-
extension.

Commands.

1. Assignment: � � 'expression(; – any expression may
appear on the RHS, and any ”lvalue” may appear on the
LHS. An lvalue is a variable, a field of a struct, or an
array entry.

2. If: if �'Boolean expression(�'statement(

3. If-else: if �'Boolean expression(� 'statement( else
'statement(

4. For: for 'index(�'low val( �� 'high val(
'statement( � the range of the for loop must be a
compile-time constant.

5. block � statement, � � �, statement �


