
 1

Strider GhostBuster:

Why It’s A Bad Idea For Stealth Software To Hide Files

Yi-Min Wang, Binh Vo, Roussi Roussev, Chad Verbowski, and Aaron Johnson

Microsoft Research, Redmond

File-hiding through lying APIs [HTB03, NTI04] is an advanced stealth technique used by many

popular system-monitoring software such as RootKits, Trojans, and keyloggers (collectively called

“ghostware” in this paper) to make executables or data files invisible. Once the ghostware program is

started, it intercepts all file queries at a very low level and uses filtering to ensure that a chosen subset of

files are never revealed to any file query operations made by any program, not associated with the

ghostware, running on the infected machine. This technique can defeat experienced system administrators

who search the file system and Windows Registry for suspicious entries, as well as commonly used

malware scanning tools that are based on known-bad file signatures.

Most of the existing ghostware detection tools exploit the imperfection of today’s file-hiding

implementations. Although such tools are necessary for combating today’s ghostware, they may essentially

provide testing resources to help the evolution towards perfect ghostware. In contrast, the Strider

GhostBuster targets the fundamental weakness of the file-hiding behavior and turns the problem into its

own solution [WVR+04].

The basic idea is very simple: since the hidden files are visible before the ghostware is started and

become invisible after that, a diff of the two file-system scans before and after should precisely capture all

hidden files. A straightforward implementation of this idea consists of three steps: (1) we first boot

normally into the infected OS and invoke “dir /s /a” to scan the entire file system. We save the output in a

file named, say, “Infected_Scan.txt” on a disk; (2) we reset the machine and this time boot into a clean

WinPE CD [WPE] that contains a clean version of WinDiff.exe. We invoke “dir /s /a” again and save the

output in the file “Clean_Scan.txt”. The hidden file should appear in this output because the ghostware was

not running during the scan; (3) we invoke WinDiff.exe to compare the two files “Infected_Scan.txt” and

“Clean_Scan.txt”. The diff result should contain all hidden files, plus some minor “noise files” that were

updated between the two scans.

We have tested the tool on four file-hiding RootKits/Trojans (Hacker Defender, Aphex, Vanquish, and

Msvsres.dll), two file-hiding commercial keyloggers (ActMon and ProBot SE), and four commercial file-

hiding security software (Hide Files 3.3, Hide Folders XP, Advanced Hide Folders, File & Folder

Protector). In all cases, GhostBuster deterministically, efficiently, and effectively detected all hidden files.

One significant property of the GhostBuster approach is that it does not require a pre-generated, cat-and-

mouse known-bad file signature; it simply relies on the hiding behavior as a “precise and universally-bad

behavior signature” because no good software should try to hide from the machine administrators.

References

[HTB03] “How to become unseen on Windows NT,” http://rootkit.host.sk/knowhow/hidingen.txt.

[NTI04] “NTIllusion: A portable Win32 userland rootkit,” Phrack Magazine, July 2004.

http://www.phrack.org/phrack/62/p62-0x0c_Win32_Portable_Userland_Rootkit.txt.

[WPE] Microsoft Windows Preinstallation Environment (Windows PE),

http://www.microsoft.com/licensing/programs/sa/support/winpe.mspx.

[WVR+04] Y. M. Wang, et al., “Strider GhostBuster: Why It’s A Bad Idea For Stealth Software To Hide Files,”

Microsoft Research Technical Report MSR-TR-2004-71, July 2004.

