
Toward a Verified, Secure,
General-Purpose Microkernel

Jonathan S. Shapiro, Eric Northup,
M. Scott Doerrie, Swaroop Sridhar
Johns Hopkins University

With particular thanks to:
Hao Chen, David Wagner (UCB)
Matt Kauffman, J. Strother Moore (U.T. Austin)
Bill Bevier (AMD, Inc.)
Steve Crocker (Shinkuro, Inc.)



Quick Review

You have:
A set of security, isolation requirements
A model of a system

You want to know:
Does the system you built meet the requirements?

Approach:
Verify that the operational semantics of the model satis-
fies the requirements (Shapiro&Weber, 2000)

Must formalize requirements (goals)
Must formalize model

Verify correspondence: does implementation match the 
model.

Sufficient rigor is moderately hard, but tractable.



Complications

Sufficient rigor is hard.
Need an implementation language that you can 
reason about formally.

Usually assumed that aliasing needs to be restricted
no general pointers!

We found an alternative
From a practical standpoint, need to use a stan-
dardized language

That leaves Ada
But after you hire all of the surviving ADA pro-
grammers...



Traditional Approach

Source
Program

(Ada or C)

Compiler

Binary



Traditional Approach

Source
Program

(Ada or C)

Compiler

Binary

Importer
Program

Model



Traditional Approach

Source
Program

(Ada or C)

Compiler

Binary

Importer
Program

Model

Language
Semantics

Model

Goal
Theorems

(Requirements)
Prover

Satisfaction ?



What You
Assumed

What You Proved

What You Run

Traditional Approach

Source
Program

(Ada or C)

Compiler

Binary

Importer
Program

Model

Language
Semantics

Model

Goal
Theorems

(Requirements)
Prover

Satisfaction ?



What You
Assumed

What You Proved

What You Run

Traditional Approach

Source
Program

(Ada or C)

Compiler

Binary

Importer
Program

Model

Language
Semantics

Model

Goal Model
and Theorems
(Requirements)

Prover

Satisfaction ?

485 Klocs

O(60 Klocs)

O(400 ISPages)

ISPage: a page of international standardese



What You Proved

What You Run

BitC Approach (Interim)

Target
Program

(C)

Compiler

Binary

Exporter
Source

Program
(BitC)

485 Klocs

O(100 lines)

Inspected



What You Proved

What You Run

BitC Approach (Interim)

Target
Program

(C)

Compiler

Binary

Exporter
Source

Program
(BitC)

Goal Model
and Theorems
(Requirements)

Prover

Satisfaction ?

485 Klocs

O(100 lines)

ACL2
Compiler

Verified!

Inspected



What You Assumed

What You Proved

What You Run

BitC Approach (Eventual)

Binary

Native
Compiler

Source
Program

(BitC)

Goal Model
and Theorems
(Requirements)

Prover

Satisfaction ?

O(???)

ACL2
Compiler

Verified!

Machine
Model

O(10 Klocs)

Prover Verifiable



The Good News

EROS is pretty easy to specify.
Atomic units of operation: it's really just a big state ma-
chine
The externally visible abstractions are relatively easy to 
formalize (address spaces, processes)

We can duck the aliasing issue because the im-
plementation can (and does) restart system calls 
when it gets into a corner.
From prior work, we think we know what proper-
ties we are trying to prove.
EROS-NG is much simpler and faster than EROS



The Good News

EROS is pretty easy to specify.
Atomic units of operation: it's really just a big state ma-
chine
The externally visible abstractions are relatively easy to 
formalize (address spaces, processes)

We can duck the aliasing issue because the im-
plementation can (and does) restart system calls 
when it gets into a corner.
From prior work, we think we know what proper-
ties we are trying to prove.
EROS-NG is much simpler and faster than EROS

Secret Sauce!



Things We Know How to Verify
(We Think)

All required access checks actually happen.
No TOCTOU errors
Every kernel path terminates in bounded time.
Correctness of address translation and page table in-
validation.
Correctness of states (e.g. stopped process cannot 
receive)
Correctness of dependency invariants
Enforcement of confinement preconditions
Correspondence to the abstract operational seman-
tics (as revised).
(BitC is inherently memory safe)



End Result

First general-purpose, fully verified security kernel
And oh yes:

Still fast
Still real-time
Still embeddable
Still runs on commodity hardware

Subject to secure boot assumptions
But also:

First generally available verification infrastructure for 
systems programmers
Identification of a class of important programs that we 
can actually verify things about (atomic transactional).


