i

The following paper was originally published in the
Proceedings of the Fifth USENIX UNIX Security Symposium
Salt Lake City, Utah, June 1995.

Implementing a Secure rlogin Environment:
A Case Study of Using a Secure Network Layer Protocol

Gene H. Kim, Hilarie Orman, and Sean O’Malley
University of Arizona, Tucson, AZ

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

| mplementing a Securerlogin Environment:
A Case Study of Using a Secure Network Layer Protocol

Gene H. Kim

Hilarie Orman

Sean O’Malley

Department of Computer Science
University of Arizona
Tucson, AZ 85721

Abstract

This paper describes our experiences building a
secure rloginenvironment. With minimal changes to the
rlogin server and the use of a secure network layer pro-
tocol, we remove the vulnerability of hostname-based
authentication and IP source address spoofing. We in-
vestigate how applications such as rlogin interact with
this new layer, and propose extensions to the rlogin
server that can utilize these services. We believe rlogin
presents a situation where the application layer seems
the most appropriate location for enforcing security pol-
icy, instead of in a lower layer.

Our layered approach to rlogin security achieves
functionality similar to the Kerberos klogin client and
the encrypted telnet packages, without their complexity
or loss of generality. Implementing the application layer
rloginserver extensions required fewer than ninety lines
of code. Even if our rlogin application layer extensions
are omitted, rlogin connections still benefit from secure
network layer services.

1 [Introduction

The rlogin program provides a security feature
and at the same time introduces vulnerabilities with re-
spect to user authentication on UNIX systems. The
security feature uses the notion of trusted hoststo avoid
sending passwords over a network, where they are vul-
nerable to exposure. However, flaws in the mechanism
can be exploited to allow malicious users to gain en-
try to machines. These security vulnerabilities in the
TCP/IP protocols and the Berkeley “r-command” pro-
grams have been discussed at length in the literature
[3, 20, 27]. Nonetheless, programs such as as rlogin
remain in widespread use. The consequences of not
eliminating these security vulnerabilities can be seen in
the recent CERT advisory [6] pertaining to widespread
abuses of Unix systems via IP host spoofing and TCP
connection forging.

In this paper, we address an attack whereby a
malicious host masquerades as a trusted host to bypass
the rloginpassword security mechanism and gain access
to the system. The attacker can either forge DNS name
and address resolution replies [3] or forge the source
address in the IP packet header. The latter attack is not
a weakness due to hostname based authentication, but is
a more general problem of remote host authentication.

In response to these attack scenarios, we describe
our experiences building a secure rlogin environment
using a prototype secure network layer protocol. This
layer provides services for remote host authentication,
message integrity, and optionally, message privacy (i.e.,
packet encryption). Using these services, we have built
and demonstrated an rloginserver that is protected from
attacks and protects passwords from exposure under
more circumstances.

Our approach to rlogin security is completely
modular. By using the x-kernel [1] as our design frame-
work, the network security layer can provide authentica-
tion and privacy services without changing application
layer programs. Other solutions, such as Kerberos[15]
and the encrypted telnet programs discussed in [23, 26],
require modifying existing server and client programs.
Our modifications to rlogin allow it to establish a more
flexible security policy than it did previously.

We attribute the simplicity of our implementa-
tion and the concise interface between the application
and secure network layer to our software methodology.
We believe that modular protocols can assist in pro-
viding network security enhancements, and that small,
well-defined module interfaces are sufficient even at the
application level.

In the following sections, we describe the security
vulnerabilities in widely used UNIX network protocols
and programs that can be exploited by malicious users to
gain unauthorized access. Next, we describe our design

of the rlogin server and its extensions, and we present
our experiments with an rlogin client that establishes
a TCP connection with forged IP and Ethernet source
addresses to spoof remote rlogin servers.

We then describe other solutions that have been
proposed to solve the problem of securing remote login
sessions. We conclude our paper by comparing our
design choices with these other works, addressing the
issues of placement of policy manager and the interface
between the application and the network layer.

2 Problem definition

Many risks to system security stem from design
flaws in network protocols, servers, and programs orig-
inally written a decade ago. In the following sections,
we describe vulnerabilities that are related to the use of
rlogin.

2.1 Password Vulnerability

When an rlogin server establishes a connection
with a non-trusted host, it prompts the user for a pass-
word. As the user types the password, it is transmitted
over the network. In the past two years, this vulnerabil-
ity has extensively exploited [5] to capture passwords
en masse.

2.2 Host Naming Vulner abilities

In the rlogin server, trusted hosts are referenced
by their names. Resolving these hostnames into IP ad-
dresses (and vice versa) is accomplished by the Domain
Naming System [19], which refers to both the hierar-
chical, distributed database and the query-response pro-
tocol for accessing it. At the current time, there is no
assurance that the information in a DNS response is
valid. Consequently, any security mechanisms depend-
ing upon mapping names to addresses are ill-founded.
This is documented in the literature [3, 27], and has been
exploited in system attacks[11].

2.3 TCP/IP Vulnerabilities

TCP is used as transport service for rlogin. TCP
and IP vulnerabilities to source address spoofing and
connection forging are discussed in [3, 20]. Until re-
cently, these vulnerabilities may have seemed too ob-
scure to warrant concern. However, in January 1995,
a CERT computer security advisory [6] described the
availability of tools that automate the process of IP host
spoofing and TCP connection forging— malicious users
now can use these techniques without detailed knowl-
edge of their operation. How this tool can be used to gain
privileged access on UNIX machines running rlogindis

described in the next section.

2.4 Rlogin: Password Protection and Vulnerabili-
ties

The 4.2BSD operating system [16] introduced a
suite of programs (sometimes called the “r-commands™)
that allowed the convenient access of remote resources
on network-accessible machines. These programs,
which include rcp, rsh, and rlogin, establish remote
sessions with an associated user identifier that is used
for access control decisions; typically the identifier is
the same on both machines.

The conventional login program, executed when
logging onto a machine on its console or via telnet, re-
quires users to type their passwords. If transmitted over
a network, the password is subject to exposure as de-
scribed previously. To prevent this, the rlogin program
allows host authentication to substitute for a password.
If a user is already authenticated as a user on a trusted
host, then this authentication can be adopted without
password verification on the target host. This transitive
trust relationship is a discretionary policy determined by
the site administrator in the /etc/hosts.equiv file and by
individual users via their .rhosts files.

Although the avoidance of password exposure
prevents eavesdroppers from learning passwords, the
method of authenticating the originating host is so weak
that it has become a major vulnerability. There are
two aspects to the vulnerability. First and most basic,
no mechanism (cryptographic or otherwise) validates
whether a network packet originated from the host in-
dicated in the packet as the “source.” Second, trusted
hosts are referenced by their host names, and the mech-
anism for translating a name to an Internet address is not
secure. As a result, any host on the Internet can send
packets masquerading as another host, whether trusted
or not.

3 Design and implementation

The work described here addresses the vulnerabil-
ities described above. Strong cryptography is used for
trusted host authentication, and an alternative form of
password protection is provided to encrypt all packets
in a key that is negotiated by the two hosts.

There are three parts to the design: the modular
protocol framework, the secure network layer imple-
mented within that framework, and the rlogin server,
which applies the discretionary policy based on infor-
mation provided to it by the secure network layer.

DamnA D

rlogin —{ binflogin

_ 1
_ 1 _

L _crypto |
_1__

ipsp-esp |

—_——

a
L key-mgr |

1

rlogin server
protocol stack

rcmd library

[crypto—pol | <+—(optional layers) "f_crypto—pol |

proxy
rlogin

rlogin
client

_1 >
“ 1

L crypto |
1

L ipsp—esp

: key-mgr |

|

eth

rlogin client
protocol stack

Figure 1: Protocol stacks for rlogin server and client

3.1 Maodular protocols

Our design and implementation framework used
the object-oriented x-kernel networking architecture
[21]. The x-kernel facilitates the development of layered
network protocols — protocols are small and modular,
with fixed, well-defined operations between the layers.
The advantages of such an approach are more fully dis-
cussed in [22].

We implemented a substantial subset of the rlogin
server and client functionality in top layer protocols in
the x-kernel networking architecture. Implementing the
rloginserver and client as x-kernel protocols allowed us
to determine to what extent these particular application
layer programs interact with the secure network layer.

Beneath the rlogin protocols is the standard
TCP/IP protocol stack, with the optional inclusion of
our prototype secure network layer protocol. A diagram
of the major protocol modules is shown in Figure 1.
Note that each box in the diagram represents an individ-
ual software module presenting x-kernel interface func-
tions for opening and closing connections, sending and
receiving messages, and answering queries about con-
nections attributes (e.g. maximum packet size, type of
security, etc.). Note also the pathway that bypasses the
network security layer; this allows backwards compati-
bility for interoperating with hosts that do not implement
the network security layer.

3.2 Secure network layer

Our initial version of network layer security pro-
vides cryptographic security enhancements for the data
portion of IP version 4 packets. The security of the en-
hancements depends on a pairwise shared key between
hosts; the keys can either be manually pre-distributed or
dynamically negotiated.

The algorithms accepted between two hosts are
determined by the site configuration module. For in-
stance, a site may require that MD5 [25] authentication
be used for all packets to and from a particular remote
host. Only those packets that are acceptable according
to the site policy and pass the required cryptographic
checks are allowed to proceed up the protocol stack
(i.e., to higher level protocols and applications).

Algorithms for all combinations of sender authen-
tication, message integrity, and message privacy are
available. In practice, sender authentication and mes-
sage integrity are provide by using a keyed hash function
such as MD5. Although the option of message privacy
alone is provided by using DES in CBC mode [9], this
combination is not generally recommended [4]; privacy
plus authentication and integrity (e.g. DES-CBC over
unkeyed MD5) is a better option because it protects
packets against having information appended to them
without detection. Nonetheless, for the purpose of pro-
tecting passwords, the DES-CBC option is viable, and

DamA D

rlogin server

{session security
attributes,
remote IP address}

rlogin client

{local user,
remote user,
termtype}

/bin/login

remote IP address
{locuser,
termtype}

remuser

.rhosts files

rcmd library hosts.equiv file

PROMPT FOR PASSWORD

BYPASS PASSWORD

Figure 2: Flow graph for rlogin server authentication

rlogin makes use of it.

It should be noted that when a message integrity
service and sender authentication service are provided
by the secure network layer, via keyed MD5 for ex-
ample, then all packets on that TCP connection are
protected, not just the initial packets for user authen-
tication. This implicitly protects against the attacks on
TCP connections via IP address spoofing.

The x-kernel structure allows applications to query
lower protocols for attributes of a connection. For our
secure network layer, there are two relevant attributes:
sender authentication and data privacy. The rlogin pro-
tocol makes use of these attributes in applying its dis-
cretionary access policy.

Currently, host-host key management is done with
Diffie-Hellman key exchange [10] and validated using
RSA signatures [24]. For this prototype implementa-
tion, RSA public keys are manually distributed.

Most aspects of the network layer security policies
are determined by information in configuration files; at
runtime, the configuration information is made available
by management modules using the uniform protocol
interface of the x-kernel .

3.3 Rlogin server

To take full advantage of the security services pro-
vided by the network layer, we modified the rlogin server
in three ways: it queries the network layer for the secu-

rity attributes of the connection, it uses this information
to implement a richer authentication and password pro-
tection scheme, and only Internet addresses (not names)
are allowed for authentication decisions.

3.3.1 Unmodified rlogin server operation

In the Berkeley implementation of the rlogin
server, functionality is divided between the rlogind dae-
mon, login, and the remd library residing in libc. How
the functions are distributed is summarized in Figure
3. The rlogind daemon waits on a well-known port
for incoming connections. Once a TCP connection is
established, the daemon forks and executes login, pass-
ing the remote hostname as an argument. As part of
the connection establishment handshake, login will re-
ceive from the remote rloginclient the tuple {local user,
remote user, termtype}.

To determine whether the remote host is a trusted
host, login passes the tuple and the remote hostname
to the ruserok() function residing in the libc library. In
other words, if the hostname is a trusted host listed in
the system hosts.equiv file, or if the {hostname, local
user } pair is in the user’s .rhostsfile, the user is logged
in without any password authentication. Otherwise, lo-
gin prompts for a password. (A flow graph of rlogin
authentication information is shown in Figure 2.)

As a measure to protect against bogus DNS re-
sponses, the rlogin server attempts to validate the re-
solved address by checking the inverse mapping. First,

DamnAa A

| Component || Functions

rlogind

connection establishment

login calls remd() to decide whether to prompt for password

rcemd library call

examines .rhosts files to discover trust domains

Figure 3: Breakdown of Berkeley rlogin server components

quercus.CS.Arizona.edu gkim
quercus’ IP address
192.12.69.73 root AUTH| PRIVACY

Figure 4: A new rhostsfile

the server gets the remote host address from the IP packet
header. Using this address, a host name is resolved by
calling gethostbyaddr(). The inverse address mapping
is then resolved using gethostbyname(). If the two ad-
dresses do not match, or if the resolved host name does
not match any trusted host name in the .rhosts file, the
connection is terminated.

Our implementation of the rlogin server is a func-
tional subset of Berkeley implementation — a UNIX
rloginclient can connect with our x-kernel version of the
rloginserver. Most feature omissions pertain to terminal
1/0 services typically provided through the STREAMS
interface. Our implementation does, however, mimic
the mechanisms for connection establishment and re-
fusal, password bypass policy, and the I/O stream to
the local user shell. Server extensions were added to
address security vulnerabilities.

3.3.2 Removing hostnamereferences

Authenticating a remote host by its hostname in-
troduces the risk of DNS spoofing. To obviate this risk,
we modified the interface to login, replacing the remote
hostname argument with the remote host address. There
were few changes necessary to implement this, but they
required changing the ruserok() library call to allow the
parsing of IP addresses in the .rhosts and host.equiv
files. Note that this change alone does not eliminate the
vulnerability of IP source address spoofing.

3.3.3 Rhostspolicy extensions

A new field in the .rhostsfile specifies the security
attributes that must be present in an incoming connection
to bypass the password mechanism. At present, these at-
tributes are AUTH and PRIVACY, specifying remote host
authentication and connection encryption services re-
spectively. An example of a new rhosts file is shown
in Figure 4. The security services being provided by

the secure network layer for the connection are passed
by the rlogin server as a additional arguments to login.
For example, login may be invoked with “/bin/login -r
remotehost -auth -priv”, which denotes a remote rlogin
session from remotehost with an authenticated and en-
crypted connection. If the specified security services do
not meet the requirements specified in the rhosts file,
the connection is terminated. These extensions allow
users to create separate discretionary access policies for
trusted, unauthenticated, and/or untrusted hosts.

Implementing the changes to the application level
rloginserver required fewer than ninety lines of code. In
the Berkeley implementation, these changes would have
modified source files pertaining to the rlogind daemon,
/bin/login, and the rcmd service in the 1ibe library.

3.4 Allowed policies

To determine the security attributes of an incom-
ing connection, the rlogin server uses control operations
to query for the presence of sender authentication and/or
privacy. The network security layer supplies replies to
these queries; the security of the authentication depends
on the key distribution mechanism for setting up pair-
wise keys that hosts can use for identifying each other.
The privacy attribute is independent of the authentica-
tion.

Our rlogin server can be configured to reject all
incoming connections that cannot be authenticated (i.e.,
not using the secure network layer protocol), and also
reject connections based on the security requirements
per-user/per-host listed in the user rhostsfiles. Between
these two mechanisms, our rlogin server can be con-
figured with the same granularity as Kerberos klogin or
encrypted telnet programs.

In Figure 5, we enumerate the rlogin server ac-
tions as a function of authenticated and unauthenticated
clients, and the security flags specified in the user’s
rhostsfile.

3.5 Demonstration

To demonstrate the effectiveness of an rlogin
server running on top of a secure network layer, we

DAamnns

Authenticated rhosts specifications Description
remote host || trusted | AUTH | PRIVACY
- - - - Prompt for password
(Equivalent to conventional Berkeley rlogin.)
- yes - yes Prompt for password
Encryption protects against password eavesdropping
- yes - - Prompt for password
Bad site policy — suitable for non-essential
machines offering low-integrity public services.
Password is never sent in the clear.
- yes yes yes Reject connection
- yes yes - Reject connection
yes - - yes Prompt for password
Encryption protects against password eavesdropping
yes yes - yes Bypass password authentication
| yes | yes | yes | yes || Bypass password authentication

Figure 5: Possible connection configurations

ran a special rlogin client that forged a trusted host’s IP
and Ethernet source address. This client would connect
with an rlogin server, and log into the system without
supplying a password. A conventional TCP connection
is maintained by putting the host’s network interface
into promiscuous mode, and having the Ethernet and IP
layers passing up packets intended for the host being im-
personated. The address spoofing modifications to the
rlogin client required fewer than fifty lines of changes.*

We were consistently able to circumvent password
authentication in the Berkeley rlogin server. As ex-
pected, we were unable to be authenticated by the se-
cure network layer residing under our x-kernel rlogin
server. The server accepts an argument to enter one of
two modes: a paranoid mode that allowed only authen-
ticated connections, and another that allowed any con-
nection. By specifying minimum security requirements
in the third field of the rhostsfile, users can control with
finer granularity the level of security for remote hosts
and users.

Our experiments were run with the x-kernel, ver-
sion 3.2 under Mach v3.82 and SunOS v4.1.1. These
ran on DECstation 5000/25s and Intel 486 machines for
Mach, and Sun SparcStation 2s otherwise.

4 Other work

Some of the other solutions that have been pro-
posed to reduce the risk of system penetration via the

1 The small number of lines changed does not reflect the amount of
effort required to get the hardware and Mach device drivers working
correctly!

network use specialized hardware, additional network
layers, and new applications.

4.1 Router-based solutions

CERT currently prescribes the use of filtering
routers [23, 8] to reduce a site’s vulnerability to IP source
address spoofing. Filtering routers and firewalls can be
configured to prevent incoming IP packets with inter-
nal source addresses from entering the network. How-
ever, because these mechanisms operate by interposing
themselves between the source and destination hosts,
machines within a trusted network can still spoof each
other. Because firewalls must be in the routing path,
vulnerabilities still exist.

The more sophisticated firewalls now becoming
available can also provide point to point IP encryption
services [2]. However, the scope of protection afforded
is similar to the case of filtering routers — packets are
still sent in the clear by the originating host, presenting
a window of vulnerability to eavesdropping.

These remaining issues in router based solutions
have helped motivate another approach to providing net-
work security. Many network practitioners now believe
that providing a mechanism for end-to-end security rep-
resents the best solution for eliminating the vulnerabili-
ties described in the previous section, typically provided
by a secure network layer.

Damnm~ £

4.2 Secure network layer solutions

Network layer security is a generic approach that
can provide security enhancements for many applica-
tions, and validation of this claim was a factor in our
choice of rlogin as a guinea pig protocol for our proto-
type network layer security protocol.

In 1992, the Internet Protocol Security Working
Group was formed to “develop mechanisms to protect
client protocols of IP” at the network layer [12]. Pro-
posed network layer services include message privacy,
message integrity, source machine and network authen-
tication, access control, reflection protection, security
labels, padding, and methods of avoiding traffic analy-
sis.

[17] presents a survey of protocols that have been
submitted to date. Although no proposal has been cho-
sen for adoption at this time, prototypes have been built
and demonstrated. Among them are swiPe[14] and
IPST[7], as well as our secure network layer protocol
described in this paper.

The secure network layer service needed to elimi-
nate rloginvulnerabilities to IP spoofing is host authen-
tication, and optionally, message privacy (i.e., packet
encryption). In our work, message privacy is used as a
way of protecting transmitted passwords.

4.3 TheKerberos approach

Kerberos [15] takes a different approach to au-
thentication, using a trusted third-party to provide all
user and host authentication services — authentication
tickets are granted on a per-user, per-host basis for a
given service. Hosts and users are authenticated by
their knowledge of a host-specific or user-specific se-
cret, respectively.

The primary disadvantage of Kerberos is that all
clients requiring authentication services must be mod-
ified to use Kerberos services. For example, the Ker-
beros package includes replacements for some of the
r-commands, but it requires the installation of a central-
ized ticket server. Because of this, and the associated
problems of scaling this approach to the entire Internet,
Kerberos may not be a generally feasible solution.

4.4 Encrypted telnet packages

Telnet modifications that incorporate encryption
and authentication services are described in [23, 26].
This approach incorporates all aspects of network secu-
rity at the application layer. Instead of delegating these
functions to a package such as Kerberos, or delegating
them to a network layer protocol, these packages re-

implement them on a per-application basis. As a result,
considerable functional redundancy may exist.

45 Secure DNS

The IETF has also formed a working group to ad-
dress the security vulnerabilities in the Domain Name
Service hostname resolution protocol [19]. At the time
of this writing, [13] has been submitted to the DNS Se-
curity Working Group. However, to reduce the set of
dependencies, we do not utilize any of these services.
Use of secure DNS is not incompatible with our ap-
proach to network layer security; indeed, we plan to
use DNS extensions for accessing the public keys that
are necessary for assuring authentication in our key ex-
change protocol.

4.6 TheGSS Application Layer Interface

For purposes of comparing application interfaces,
we briefly describe the Generic Security Service Ap-
plication Program Interface described in [18]. Itis in-
tended to support in a generic manner cryptographically
oriented security services, such as authentication, in-
tegrity, non-repudiation, and privacy. Programs using
GSS-API benefit from source-level portability of appli-
cations, and independence from the underlying security
mechanisms.

The scope of GSS-API is quite large, providing
thirteen major control operations, which return one of
twenty-four defined return values. The operations man-
age credentials and security contexts, operate on generic
data objects, and provide ancillary support.

5 Discussion and analysis

Our changes to the rloginapplication layer server
removed hostname based authentication and added fa-
cilities to describe minimal security requirements on a
per-host basis. It was not strictly necessary to change
the application layer programs; the reasons for doing so
deserve explanation.

Network layers such as swiPe do not require appli-
cation layer changes. Instead, they encapsulate policy
within the network security layer, refusing connections
based on the remote host address. A similar mechanism
could be provided by a security manager protocol re-
siding between the network and application layer, only
allowing connections meeting certain parameters.

However, we assert that all remote login connec-
tions are not equal, even if they originate from the same
remote host. Consider the case when one rlogin ses-
sion prompts for a password and another automatically
accepts the user without prompting for a password. In

DAamn~a 7

the first case, encryption must be provided to protect
the transmission of the password. In the second case,
authentication services must be provided, but there may
be no clear need for encryption. Clearly, the policy de-
cision cannot be made at the network security layer for
lack of information.

In our case, implementing policy at the applica-
tion layer does not require much communication with
the underlying protocol layers. The extent of interaction
between the rlogin server and the underlying protocols
is very small: the two control operations for determin-
ing source address authentication and packet privacy.
The first operation queries whether an underlying layer
is providing remote host authentication services. The
operation is propagated down the protocol stack until a
protocol services the control request. If the operation is
propagated down the entire protocol stack without being
serviced, a failure message is automatically generated.)
The second operation determines if encryption is being
applied to the packets on the connection.

When compared to large number of interface calls
defined in the GSS-API, our application interface seems
Spartan. However, we believe itisno less versatile. The
IETF specification for IP security requires user-oriented
keying, whereby hosts would guarantee that different
users have different keys for their connections; our pro-
totype is being extended to handle this, and two new
interface operations will be provided to applications for
getting and setting the key identifiers for their connec-
tions.

As described, our rlogin implementation allows
specifications of policies based on remote hosts and re-
mote users with the same granularity as Kerberos. This
policy does not require the strong user authentication
and centralized key servers that underlie Kerberos.

We attribute the simplicity of our rlogin server
implementation and the concise interface between the
application and secure network layer to our software
methodology. It demonstrates that a small, fixed inter-
face is sufficient even at the application level, and that
modular protocols assist in providing network security
enhancements.

6 Conclusions

In this paper, we have described our approach
to solving rlogin security vulnerabilities via a secure
network layer, avoiding extensive modifications to ap-
plication level programs. We describe a set of rlogin
server extensions (e.g., adding a third field to user rhosts
files) that allow system administrators to specify policy
at a fine-grain level, equivalent to the per-user/per-host

model of Kerberos, while retaining simplicity. This is
an example of a useful policy that cannot be enforced at
the network security layer.

7 Acknowledgements

We thank Andrey Yeatts for providing his Mach
device driver and hardware expertise. Without his time,
we would still be trying to get our demonstration work-
ing. We also thank Rich Schroeppel for reviewing this

paper.

References

[1] Mark B. Abbott and Larry L. Peterson. A
language-based approach to protocol implemen-
tation. |EEE/ACM Transactions on Networking,
1(1):4-19, February 1993.

[2] Frederick M. Avolio and Marcus J. Ranum. A net-
work perimeter with secure external access. Tech-
nical report, Trusted Information Systems, Jan
1994,

[3] Steve Bellovin. Security problems in the TCP/IP
protocol suite. Computer Communications Re-
view, Vol. 19(No. 2), April 1989.

[4] Steve Bellovin. Hostpair weaknesses, ipsec dis-
cussion. Technical report, ATT Bell Laboratories,
1995,

[5] CERT Coordination Center. CA-94:01: Ongoing
Network Monitoring Attacks, 1994.

[6] CERT Coordination Center. CA-95:01: |IP Spoof-
ing Attacks and Highjacked Terminal Connections,
1995,

[7] Pau-Chen Cheng. Design and implementation of
modular key management protocol and ip secure
tunnel on aix. In Proceedings of the Fifth Usenix
Unix Security Symposium, 1995.

[8] Bill Cheswick and Steve Bellovin. Firewalls and
Internet Security: Repelling the Wily Hacker.
Addison-Wesley, 1994,

[9] Data encryption standard. National Bureau of
Standards FIPS, 1977.

[10] W. Diffieand M. Hellman. New directionsin cryp-
tography. IEEE Transactions on Information, IT-
22, Nov 1976.

[11] Mark W. Eichin and Jon A. Rochlis. With micro-
scope and tweezers: An analysis of the internet
virus of november 1988. In Proceedings of the
1989 |IEEE Symposium in Research on Security
and Privacy, 1989.

DamnA~ O

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Internet Engineering Task Force. Internet protocol
security protocol working group charter. Internet
Activities Board, 1992.

Donald E. Eastlake Ill. Domain name sys-
tem protocol security extensions. Technical Re-
port IETF Working Draft draft-ietf-dnssec-secext-
03.txt, DNS Security Working Group, Jan 1995.

John loannidis and Matt Blaze. The architecture
and implementation of network-layer security u
nder unix. In Proceedings of the Fourth Usenix
Unix Security Symposium, pages 29-39, October
1993.

J. Kohl and Clifford Neuman. The kerberos net-
work authentication service (V5). Request for
Comments (Proposed Standard) RFC 1510, Inter-
net Engineering Task Force, September 1993.

Samuel J. Leffler, Marshall Kirk McKusick,
Michael J. Karels, and John S. Quarterman. The
Design and Implementation of the 4.3BSD UNIX
Operating System. Addison-Wesley, 1989.

Mark H. Linehan. Comparison of network-level
security protocols. Technical report, IBM T. J.
Watson Research Center, June 1994,

J. Linn. RFC 1508: Generic security service ap-
plication program interface, version 2. Internet
Activities Board, November 1994,

P. Mockapetris. RFC 1034: Domain names —
concepts and facilities. Technical report, Internet
Activities Board, November 1987.

Robert T. Morris. A weakness in the 4.2bsd unix
tep/ip software. Technical report, ATT Bell Labo-
ratories, 1985.

Sean W. O’Malley and Larry L. Peterson. A dy-
namic network architecture. ACM Transactionson
Computer Systems, 10(2):110-143, May 1992.

H. Orman, S. O’Malley, R. Schroeppel, and
D. Schwartz. Paving the road to network security,
or the value of small cobblestones. In Proceedings
of the 1994 Internet Society Symposium on Net-
work and Distributed System Security, February
1994,

Marcus J. Ranum. Thinking about firewalls. In
Proceedings of Second International Conference
on Systemsand Networ k Security and Management
(SANSHI), Apr 1994,

[24]

[25]

[26]

[27]

R. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public key
cryptosystems. Communicationsof the ACM, Vol.
21(No. 2), 1978.

R. L. Rivest. RFC 1321: The md5 message-digest
algorithm. Technical report, Internet Activities
Board, April 1992.

David R. Safford, Douglas Lee Schales, and
David K. Hess. The TAMU security package: An
ongoing response to internet intruders in an aca-
demic environment. pages 91-118, Berkeley, CA,
1993. USENIX Association.

Christoph L. Schuba and Eugene H. Spafford.
Countering abuse of name-based authentication.
Technical Report CSD-TR-94-029, COAST Lab-
oratory, Purdue University, apr 1994.

Damn~ O

