
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

USENIX Workshop on Smartcard Technology
Chicago, Illinois, USA, May 10–11, 1999

SCFS: A UNIX Filesystem for Smartcards

Naomaru Itoi, Peter Honeyman, and Jim Rees
University of Michigan, Ann Arbor

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org



SCFS: A UNIX Filesystem for Smartcards

Naomaru Itoi, Peter Honeyman, and Jim Rees

Center for Information Technology Integration

University of Michigan

Ann Arbor

itoi@eecs.umich.edu, honey@citi.umich.edu, rees@umich.edu

Abstract

Smartcard software developers su�er from the
lack of a standard communication framework
between a workstation and a smartcard. To
address this problem, we extended the UNIX
�lesystem to provide access to smartcard stor-
age, which enables us to use �les in a smartcard
as though normal UNIX �les, but with the ad-
ditional security properties inherent to smart-
cards.

1 Introduction

Today, it is easy to purchase smartcards in rea-
sonable prices, e.g., $5 - $20 for each. How-
ever, smartcard software development is hard:
smartcard software developers have long suf-
fered from the lack of a user friendly stan-
dard communication protocol between appli-
cation software1 and a smartcard. The ISO-
7816 communication protocol [9] is so widely
accepted that virtually all smartcards support
it.2 However, the protocol is not a particularly
desirable one:

� It is a primitive message passing proto-
col. Providing only read and write opera-

1\Application software" is a program running on a
workstation that communicates with a smartcard. A
program running on a smartcard is called \on-chip soft-
ware".

2Almost all smartcards support ISO-7816-1, -2, and
-3; many also support ISO-7816-4 [18]

tions for raw data, it does not de�ne high-
level interfaces such as UNIX �les and I/O
streams. This hampers our ability to build
application software.

� Although all smartcards support ISO-
7816, details of implementation of the pro-
tocol di�ers among vendors and types of
smartcards. This requires software devel-
opers to tailor their applications to speci�c
smartcards.

Di�erences among smartcards range from
trivial ones, such as di�erent opcodes, to
essential ones, such as di�erent authen-
tication mechanisms, etc. For example,
the CLA byte of application class3 is 0x00
in some smartcards (Giesecke & Devrient
STARCOS Version 2.1), while it is 0xc0 in
others (Schlumberger MultiFlex).

To address the de�ciencies of ISO-7816, many
new standards have been proposed. Examples
are:

� General purpose standards: Open Card
Framework (OCF) [2, 8] and PC/SC [3, 4].

� Special purpose standards: PKCS #11
[12] for cryptography, EMV [5] and SET
for electronic commerce [13].

� On-chip software standards: JavaCard [15]
and MULTOS [16].

Although these standards provide abstractions
at a higher level than ISO-7816-4, it remains a

3See Guthery and Jurgensen [6] or ISO-7816 [9] for
a description of of \CLA" and \application class."



challenging task for developers to select a stan-
dard, purchase all software and hardware re-
quired, learn API and tools, and �nally imple-
ment software. Furthermore, those standards
do not eliminate problems with interoperabil-
ity { e.g., OCF limits the programming lan-
guage to Java; PC/SC is used only with Win-
dows { and create their own API dependencies,
because software written for one standard does
not run with another. We discuss these issues
in Section 5.1.

Our solution to this problem is to embrace a
classic, sophisticated API { the UNIX �lesys-
tem { instead of inventing a new one. The
UNIX �lesystem API suits a smartcard well
because a smartcard is a passive device used
for secure storage: a smartcard stores data (se-
crets), and responds to requests from a work-
station to read or write the data. It does
not initiate actions. This passivity is charac-
teristic of storage devices such as hard disks.
Cryptographic functions, such as get challenge,
internal and external authenticate, verify key
and PIN, are unique to smartcards. However,
smartcards still act passively for these func-
tions, and they are implemented with ioctl().

In UNIX operating systems that support
vnodes (equivalently, Virtual Filesystem, or
VFS) [11] [14], it is possible to write a virtual
�lesystem that communicates with a special
hardware device, e.g., a smartcard, and mount
it in the UNIX �lesystem name space. The
mounted hardware device then becomes iden-
tical to any UNIX �lesystem hierarchy from
the perspective of a user or application soft-
ware. For example, if a smartcard is mounted
on /smartcard, it is possible to use UNIX com-
mands such as ls, cd, pwd, and cat, and system
calls such as open, read, and write on �les in
the smartcard.

We have implemented a smartcard �lesystem
(or SCFS) in the OpenBSD-2.44 kernel. With
SCFS mounted, a user or an application can
use �les in a smartcard as she would normal
UNIX �les.

4OpenBSD is a free, 4.4BSD-based operating sys-
tem. http://www.openbsd.org

The remainder of this paper is organized as fol-
lows. Section 2 describes our goals and the
design of SCFS. Section 3 details implemen-
tation of SCFS. (Readers not interested in im-
plementation details may want to skip Section
3.) Performance evaluation in Section 4 shows
that the overhead of SCFS is small and does
not substantially degrade the performance of
smartcard software. We discuss SCFS with a
comparison to other standards in Section 5. Fu-
ture direction is described in Section 6 and con-
cluding remarks are in Section 7.

2 Design

2.1 Design Goals

Our goal is to provide a user friendly interface
to access a smartcard. We de�ne design goals
as follows, although not all can be achieved, for
reasons outlined in Section 2.2:

� Files in a smartcard should be indistin-
guishable from other UNIX �les.

� A smartcard can be accessed with any
UNIX system call (e.g., creat, open,
read, and write).

� UNIX commands (e.g., ls, cd, pwd, and
cat) can be used to access �les in a smart-
card.

� The smartcard VFS must be able to access
any smartcard that supports ISO-7816.

� The smartcard VFS should hide details
about a smartcard to users.

� Security of a smartcard must be preserved.

� No smartcard �les may be cached in the
UNIX system because a smartcard is a
more secure place to store data (see the
end of Section 2.3).



2.2 Design Problems

A huge obstacle to achieving our goals is the
absence of a standard way to request metadata
information about �les in a smartcard. Some
information essential for the UNIX �lesystem
is simply not present in a smartcard, e.g.,
�le sizes, directory contents, and time stamps.
Without such information, it is impossible to
implement the complete functionality of the
UNIX �lesystem. For example, without direc-
tory entries, it is impossible to implement ls
properly.

We have two choices, with concomitant trade-
o�s:

� Dictate an internal format on a smartcard
to store information such as directory en-
tries, length of a �le, etc., in a �le in a
smartcard. This provides full functional-
ity of UNIX �lesystems.

� Degrade functionality of SCFS. For exam-
ple, no ls, no cat.

We compromise between the two choices. We
believe it is essential to be able to determine a
smartcard's directory structure through UNIX
commands such as ls, so SCFS requires di-
rectory structure information to be stored in
a smartcard. We also require a smartcard
to store �le lengths because they are neces-
sary to implement the read and write system
calls. Every directory (or DF in ISO-7816) in
a smartcard has a �le called 2e.69 (\.i") con-
taining the requisite metadata.

2.3 Design

Inspired by Arla [19], SCFS is implemented as a
kernel module, xfs, that handles VFS requests,
and a user daemon, scfsd, that communicates
with an ISO-7816 smartcard. Figure 1 shows
the overview of the design.

When an application calls a VFS operation
(e.g., read or write to a smartcard �le), the

VFS XFS

Application SCFSD Smartcard

User-level

Kernel

ISO-7816
interface

UNIX 
Filesystem
interface

Figure 1: SCFS design

kernel module upcalls scfsd to request service.
Scfsd creates ISO-7816 APDUs,5 sends them
to a smartcard, gets returned data, and passes
it to the kernel module.

Separation between xfs and scfsd allows us to
use an existing ISO-7816 library [17] for han-
dling the ISO-7816 protocol and dealing with
its complex timing requirements. Kernel code
is minimized, making SCFS easy to debug and
port.

To absorb di�erences among smartcards, SCFS
requires some knowledge of a smartcard before
it is mounted, e.g., existence of special APDUs,
opcodes used for APDUs, ATRs6 they return,
etc. The information is stored in a SCFS con-
�guration �le, /usr/scfs/etc/scfs.scdb by
default.

SCFS automatically identi�es a smartcard type
from its ATR. When a reset signal is sent to a
smartcard, it responds with a 4 - 32 byte ATR,
unique to each smartcard type. The SCFS con-
�guration �le has a database of known ATRs.
If the ATR from the smartcard is listed in the
con�guration �le, SCFS retrieves the entry for
that type of smartcard. Details about the con-
�guration �le are described in Section 3.6.

Unlike most UNIX �lesystems, SCFS does not
cache data read or written because caching
might degrade the security of data resident in a
smartcard. Data in the UNIX �lesystem (typi-
cally a hard disk) is not protected as securely as

5An Application Protocol Data Unit, or APDU, can
be viewed as a framing protocol for messages passed
from application software to a smartcard [9].

6Answer To Reset.



in a smartcard and is not protoected at all from
an adversary with administrative privileges. In
addition, �les in a hard disk are usually backed
up on tape, which may fall into the hands of
an adversary.

3 Implementation

3.1 Overview

As described in Section 2.3, SCFS is separated
into a kernel module (xfs) and a SCFS dae-
mon (scfsd), detailed in Sections 3.2 and 3.3,
respectively. Communication between xfs and
scfsd is detailed in Section 3.4. Implementa-
tion of SCFS is based on Arla-0.6. Communica-
tion between xfs and scfsd is derived directly
from Arla.

3.2 Kernel Module (xfs)

The kernel module (xfs) implements a virtual
�lesystem, the ioctl system call, and commu-
nication with scfsd.

The virtual �lesystem consists of several func-
tions called by the kernel when a �le in SCFS
is accessed. For example, the core part of
the read system call is implemented by the
xfs read() vnode operation in the xfs.

We describe some important vfs operations,
xfs mount() and xfs root(), and some im-
portant vnode operations, i.e., xfs lookup(),
xfs read(), xfs write(), xfs getattr(),
and xfs readdir(), in Section 3.5.

Xfs is typically loaded into the kernel at boot
time. When xfs needs to communicate with a
smartcard, it performs the communication by
upcalling scfsd. For example, xfs read() in-
vokes xfs message readsc() in scfsd. Xfs

waits until it receives data from scfsd, and
sends the data back to the application with the
uiomove kernel function.

3.3 SCFS daemon (scfsd)

Scfsd performs operations requested by xfs.
For requests that require smartcard access,
scfsd translates the request to ISO-7816 AP-
DUs. Figure 2 shows an example of message

ow when an application requests to read 8
data bytes from a smartcard.

VFS XFS

Application SCFSD Smartcard

read(8 bytes)

msg_readsc
msg_installdata(data)

{00, a4, b0, 00, 08}

data

data

data

Figure 2: Reading 8 data bytes from a
smartcard

3.4 Communication between xfs
and scfsd

Xfs communicates with scfsd through RPC.
When xfs needs access to a smartcard, it con-
structs a request message, puts it into a mes-
sage queue, and waits for scfsd to reply. Code
for sending a request to read 8 bytes from a
smartcard is as follows:

struct xfs_message_readsc msg;

msg.header.opcode = XFS_MSG_READSC;

msg.buf = buf;

msg.size = 8;

msg.offset = 0;

fidcpy (msg.fid, xnode->handle);

xfs_message_rpc(fd, &msg.header,

sizeof(msg));

After invoking xfs message rpc(), xfs sleeps
until it receives the result of the request. Scfsd
eventually receives data from a smartcard and
sends it back to the kernel module. Here is an
example of sending a reply message:



struct xfs_message_installdata msg;

msg.header.opcode = XFS_MSG_INSTALLDATA;

memcpy (msg.buf, data);

msg.size = size;

xfs_send_message_wakeup(fd, error, msg);

3.5 Important VFS/Vnode opera-
tions

In this section, we detail the implementation of
some important VFS and vnode operations.

VFS Operations:

� Xfs mount() mounts SCFS on a speci�ed
directory. It �rst sends a reset signal to the
smartcard. When it receives ATR from the
smartcard, it scans the con�guration �le to
�nd a smartcard description that matches
the ATR, reads the con�guration informa-
tion, initializes scfsd, initializes xfs, and
creates the mount point.

� Xfs root() operation selects a root direc-
tory (3f.00) in a smartcard and installs
an XFS node and a vnode for a root node.

Vnode operations:

� Xfs lookup() translates a path to an 8
byte fid.7 It checks if the requested path-
name and its parent are both in the direc-
tory structure. If they are, it constructs
and returns the �d. Currently, a path
length is restricted to four components be-
cause a fid is 8 bytes long, big enough to
hold four ISO-7816 components, which are
two bytes each. We map these two bytes
into their ASCII equivalents in the natural
way.

� Xfs read() reads data from a (possibly
PIN-protected) smartcard �le, as follows.

7A fid is a �le identi�er that is unique in SCFS,
consisting of names of the �le itself and its ances-
tors. For example, a fid of a �le 3f.00/77.77/77.01 is
77.01.77.77.3f.00.ff.ff.

(1) It selects the target �le. (2) When
the current �le and the target �le have the
same parent, the target �le is selected by
a select APDU. Otherwise, the entire path
from the root must be navigated; ISO-7816
does not allow selection of an arbitrary �le,
only one in the currently selected direc-
tory, so in this case, xfs read() selects the
root �le (3f.00), and moves down a path
one by one to the target �le. (3) With the
�le now selected, xfs read() sends a read
APDU (e.g., c0 b0 00 00 length) to the
smartcard. (4) If the read request fails be-
cause the �le is protected by a PIN, scfsd
prompts the user for a PIN. The prompt
is directed to the controlling tty of the ap-
plication that issued the system call. (5)
Finally, scfsd passes the data read back
to the user via a call to the xfs layer and
kernel uiomove().

� Xfs write() behaves identically to
xfs read(), except for the direction of
data.

� Xfs getattr() installs a VFS attribute
structure (struct vattr) and an XFS
attribute structure (struct xfs attr).
Scfsd performs the actual construction of
the XFS attribute structure and sends it
to xfs, which converts it into a VFS at-
tribute structure.

� Xfs readdir() is typically called by a
getdirentries() system call, often as a
result of an ls command. It returns di-
rectory entries (struct dirent) of a se-
lected directory. Each entry describes a
�le or a directory in the selected directory.
ISO-7816 shortcomings require that we de-
�ne our own metadata strategy, described
in Section 2.2. Xfs readdir() constructs
full directory entries from the directory en-
tries and from our metadata �le and re-
turns them to the application.

Some functionalities in a smartcard do not �t
the concept of a �lesystem. For example, there
is no system call to read a PIN to authorize a
user. However, these functionalities are neces-
sary to take advantage of security features of



a smartcard. To incorporate them into SCFS,
we use the ioctl() operation.8 Ioctl() takes
an opcode and data and performs an opcode-
speci�c action.

Implementation of ioctl() is straightforward,
translating one opcode to one APDU. Ioctl()
implements create �le, verify PIN, verify a
key, internal authentication, external authenti-
cation, get response, and get challenge APDUs.

3.6 Con�guration File

The con�guration �le (stored in
/usr/scfs/lib/scfs.scdb by default)
includes entries for ATR, the name of the
smartcard, the CLA byte used for APDUs,
whether the APDUs are supported by the
smartcard, the type of supported PIN protec-
tion, etc. An example of a con�guration �le is
as follows:

ATR 3b 32 15 0 49 10 {

CARDNAME CyberFlex

MULTIFLEXPIN no

MULTIFLEXGETRES no

CLA_DEFAULT c0

CLA_VERIFYKEY f0

CLA_READBINARY f0

CLA_UPDATEBINARY f0

CLA_READRECORD -1

CLA_UPDATERECORD -1

}

ATR 3b 2 14 50 {

CARDNAME MultiFlex

MULTIFLEXPIN yes

MULTIFLEXGETRES yes

CLA_DEFAULT c0

CLA_VERIFYKEY f0

}

ATR 3b 23 0 35 11 80 {

CARDNAME PayFlex/MCard

MULTIFLEXPIN no

MULTIFLEXGETRES no

CLA_DEFAULT 00

}

8We use ioctl() to avoid adding a new system call;
this decision will be revisited someday.

The byte string after the \ATR" tag is matched
with the ATR returned from a smartcard at
reset. The CLA * tags de�nes CLA bytes for
speci�c APDUs, used by scfsd to construct
APDUs. -1 means that the APDU is not sup-
ported in the smartcard type. If a CLA byte is
not speci�ed for the APDU, CLA DEFAULT
is used. For example, in CyberFlex, the CLA
byte is 0xf0 for the verify key, read binary, and
update binary APDUs. Read record and up-
date record APDUs are not de�ned. 0xc0 is
used for the CLA byte for the other APDUs.

4 Performance Evaluation

Here we evaluate the performance of SCFS, im-
plemented on two Schlumberger cards, Mul-
tiFlex and CyberFlex Access. Our test har-
ness is based on a 400 MHz Pentium running
OpenBSD-2.4.

4.1 Method

We measured total elapsed time and smartcard
access time for various vnode operations. The
di�erence re
ects �lesystem overhead. Figure
3 shows this relation.

read(2)
call

start reading
smartcard

end reading 
smartcard

read(2)
returns

Total Time

smartcard access time

scfs overhead scfs overhead

Figure 3: Performance Evaluation

Serial communication with smartcards uses 12
bits per byte (one start, eight data, one parity,
two stop bits). Our test harness communicates
with MultiFlex at 38.488 Kbps, or 312 �sec.
per byte, and with CyberFlex Access at 55.928
Kbps, or 215 �sec. per byte.



4.2 Result

To measure read and write performance, we
used six di�erent operand sizes, ranging from
1 byte to 254 bytes. Figure 4 shows the result.
For both cards, elapsed time as a function of
operand size is very close to linear.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 100 200 300

tim
e 

(s
)

read/write size (byte)

Multiflex Write
Cyberflex Access Write

Multiflex Read
Cyberflex Access Read

Figure 4: read/write time

Table 1 shows the card-related per-byte cost
for these functions. Most of the overhead, evi-
dent by the non-zero y-intercept, is due to (un-
known) card processing time; operating system
overhead is under 1 ms in each case. Some
of the per-byte card processing time is evident
in the di�erence between the theoretical mini-
mum read cost and the measured cost. Write
times are substantially longer than the theo-
retical minimum, re
ecting the time required
to write to EEPROM.

Card Op Per-byte
MF read 0.345
CFA read 0.257
MF write 5.62
CFA write 4.62

Table 1: Read and write performance. All
times in ms.

4.3 Breakdown

Table 2 shows the cost of some other operations
for the CyberFlex Access card.

Op Card OS Bytes

open 0 .566 0
lseek 0 0.339 0
create 466 2.00 78
remove 626 37.4 64
vrfykey 258 1.67 10

Table 2: Read and write performance. Times
in ms. Bytes represent the amount of data
transfered in the operation.

The directory structure cache, created at
mount time by reading the \.i" �le, is evident
in the open and lseek operations, which do not
communicate with the card. Verify key, not a
vnode operation, is implemented with pioctl.

5 Discussion

5.1 Related Work

Here we discuss three important related works,
OCF, PC/SC, and some special purpose stan-
dards.

OCF

OpenCard Framework is middleware that sup-
ports a smartcard with Java [2, 8] by provid-
ing high-level APIs, vendor transparency, card
type transparency, and extensibility. These ob-
jectives are similar to ours. The principal ad-
vantage of OCF is that it employs Java. Pro-
grammers familiar with Java can start smart-
card programming easily. The following is an
example taken from \OpenCard Framework 1.1
Programmer's Guide" [7]. It reads a �le \id"
(0x6964) and prints it out to standard output.



public static void main(String[] args)

{

System.out.println(

"reading smartcard file...");

try {

SmartCard.start();

// wait for a smartcard with file

// access support

CardRequest cr =

new CardRequest(

FileAccessCardService.class);

SmartCard sc =

SmartCard.waitForCard(cr);

FileAccessCardService facs =

(FileAccessCardService)

sc.getCardService(

FileAccessCardService.class, true);

CardFile root = new CardFile(facs);

CardFile file =

new CardFile(root, ":6964");

byte[] data =

facs.read(file.getPath(), 0,

file.getLength() );

sc.close();

String entry = new String(data);

entry = entry.trim();

System.out.println(entry);

} catch (Exception e) {

e.printStackTrace(System.err);

} finally { // even in case of an error

try {

SmartCard.shutdown();

} catch (Exception e) {

e.printStackTrace(System.err);

}

}

System.exit(0);

}

}

The example code is easy to understand for
those familiar with Java. Programmers can
take advantage of the higher abstraction of

Java, such as I/O streams, etc. OCF is inte-
grated with JavaCards, providing a consistent
development environment for application soft-
ware and on-chip software.

However, the reliance on Java can also be
viewed as a disadvantage. Java and its object
oriented model modularize and simplify com-
plex software, but a smartcard is a simple, pas-
sive device. For many smartcard applications,
Java might be viewed as overkill.

In SCFS, we use a smartcard in a simple way.
For example, we can print out a �le (as in the
OCF example) by typing:

% mount_scfs /dev/scfs0 /smartcard

% cat /smartcard/id

OCF cannot be used with languages such as C
and C++, the languages in which most oper-
ating systems and security protocols are writ-
ten. Consequently, OCF o�ers little to en-
hance directly the security of many operating
systems and security protocols, such as UNIX,
Kerberos, SSH, and PGP.

PC/SC

PC/SC is a general purpose architecture for in-
tegrating a smartcard into PCs [3]. Its objec-
tives are similar to OCF and SCFS. According
to part 6 of the speci�cation [4], the PC/SC
API is similar to the UNIX �lesystem, featur-
ing Open(), Close(), Read(), Write(), Seek(),
etc. Therefore, usability of PC/SC and SCFS
are similar.

Unlike OCF, PC/SC supports multiple lan-
guages and development environments, such
as C, VC++, VB++, and Java. However,
it is used only with Windows operating sys-
tems. While SCFS currently supports only
OpenBSD, it is possible to port it to other
UNIX systems, and (perhaps) even to Windows
NT.9

9If we purchase the Installable Filesystem package.



Special Purpose Standards

Application speci�c standards such as
PKCS#11, EMV, and SET have advan-
tages in usability in speci�c domains because
of higher abstractions than SCFS. In SCFS,
functionality to take advantage of smartcard
security, such as internal and external au-
thentication, is given by the ioctl() system
call. However, ioctl() is not as user friendly
as the functionality provided by PKCS#11,
EMV, and so on. We may provide libraries for
speci�c purposes to wrap around SCFS to give
higher abstractions.

5.2 Advantage of SCFS

Transparent API with the UNIX Filesys-
tem

SCFS di�ers from the other approaches such as
OCF and PC/SC because it is implemented as
an operating system extension. Consequently,
to an application, smartcard �les look identical
to �les stored on other media. With SCFS, an
application can use a smartcard without mod-
i�cation (Figure 5).

Application

OS

Application

OS SCFS

Figure 5: Application is not modi�ed to
use SCFS.

With SCFS, many UNIX applications can take
advantage of smartcard security without mod-
i�cation. For example, here is how we made
SSH work with a private key stored in a
smartcard: we added a symbolic link from
$HOME/.ssh/identity to /smartcard/ss/id

and copied a private-key to the SSH identity
�le.

citi% mount_scfs /dev/scfs0 /smartcard

citi% ln -s /smartcard/ss/id

~/.ssh/identity

citi% ssh sin.citi.umich.edu

Enter PIN:

sin% logout

PGP works with a private key in a smartcard
in a similar way:

citi% mv ~/.pgp/secring.pgp

/smartcard/pg/ky

citi% ln -s /smartcard/pg/ky

~/.pgp/secring.pgp

Although not tested yet, Kerberos tickets and
browser cookies can be stored in SCFS in sim-
ilar ways.

In contrast, OCF or PC/SC require that an
application be modi�ed to use a smartcard be-
cause the API for a smartcard is di�erent from
the API for normal �les (Figure 6).

Application

OCF or PC/SC

OS

Application

OS

Figure 6: Application must be modi�ed
to use OCF or PC/SC

Portability

Another advantage of SCFS is portability.
Most of the SCFS code is in user space and
easily ported to other operating systems. The
xfs kernel module is based on Arla, which is
already ported to many UNIX-like operating
systems, including Solaris, NetBSD, FreeBSD,
OpenBSD, Linux, AIX, HP-UX and Digital
UNIX. It is easy to port SCFS xfs to other
operating systems.

5.3 SCFS as Development Tool

Smartcard standards other than SCFS give
higher abstractions for users, e.g. Java lan-
guage in OCF, EMV'96 for electric commerce,



PKCS#11 for cryptographic applications, etc.
Depending on the type of applications, dif-
ferent kinds of abstraction may be required.
Therefore, there are many standards that do
not interoperate [1]. In contrast, SCFS works
with a raw smartcard with a minimumamount
of abstraction; no matter what functionality
a smartcard o�ers, SCFS can access and use
its secure storage. SCFS allows users to ac-
cess a smartcard with sophisticated UNIX com-
mands, such as cd, ls, pwd, cat, etc. SCFS is
especially helpful in maintenance, testing, and
debugging; Figure 7 depicts our model of SCFS
as a development tool.

SCFS

Smartcard

Application

OCF PC/SC EMV PKCS#11

Application Development

Maintenance, Test, Debug

Figure 7: SCFS as a low-level develop-
ment tool.

6 Future Directions

Some ideas derived from other smartcard
standards suggest enhancements to SCFS. In
PC/SC, a smartcard speci�c driver is loaded as
a DLL (Dynamic Loadable Library). In SCFS,
smartcard speci�c code is directly written in
the user-level daemon, scfsd. PC/SC's ap-
proach is more extensible than ours because it
does not require recompilation to add a driver
for a new smartcard. We are considering ex-
tending SCFS to have the same advantage with
dynamically loadable libraries.

We intend to port SCFS to di�erent operating
systems and to support more smartcard types.
(Currently it supports only Schlumberger Mul-
tiFlex, CyberFlex, and PayFlex).

Security of SCFS should be explored. SCFS is

currently vulnerable to Trojan Horse attacks,
i.e., if an adversary has administrative privi-
leges, she can install a rogue version of SCFS
that steals a user's PIN or modi�es contents of
the smartcard. We are investigating integrity
checking and authentication of SCFS code by
a smartcard.

We plan to use SCFS in several applications.
One of them, storing Kerberos tickets, is par-
ticularly interesting, as it dovetails with our
related Kerberos V5 smartcard extensions [10].
In that application, the smartcard performs de-
cryption on Kerberos tickets. Storing the result
in a protected SCFS �le indicates the synergy
of our approach.

7 Conclusion

We have implemented a Smartcard Filesystem
(SCFS) to ease development of smartcard soft-
ware. SCFS provides a UNIX �lesystem API
for a smartcard. Developers can use the well-
established UNIX API and development envi-
ronment to develop smartcard software. Per-
formance evaluation shows the overhead caused
by SCFS is negligible.

8 Acknowledgment

We thank the Arla developers: Assar Wester-
lund, Love Hornquist-Astrand, Magnus Holm-
berg and many more people in the arla-drinkers
mailing list for patiently answering our ques-
tions.

This work was supported by Schlumberger's
Program in Smartcard Technology at CITI.

References

[1] Duncan W. Brown. Application de-
velopment: A new focus for smart



card suppliers and implementaters. In
CardTech/SecureTech'98, volume 1, pages
352{353, Washington, DC, April 1998.

[2] OpenCard Consortium. General in-
formation web document, Oct. 1998.
http://www.opencard.org / docs / gim/
ocfgim.html.

[3] Microsoft Corporation. Smart
cards, white paper, April 1998.
http://www.microsoft.com/ smartcard/
smartcards/ scardwp.asp.

[4] PC/SC Workgroup (Microsoft Corp.
etc.). Interoperability speci�cation
for ICCs and personal computer
systems, part 1-8, December 1997.
http://www.smartcardsys.com.

[5] Europay, MasterCard, and Visa. EMV'96:
Integrated circuit card application spec-
i�cation for payment systems, June
1996. http://www.mastercard.com/
emv/emvspecs02.html.

[6] Scott B. Guthery and Timothy M. Ju-
rgensen. Smart Card Developer's Kit.
MacMillan Technical Publishing, Indi-
anapolis, Indiana, December 1997.

[7] R. Hermann, D. Husemann, and
P. Trommler. OpenCard framework
1.1 programmer's guide, Oct 1998.
http://www.opencard.org / docs / pguide
/ PGuide.html.

[8] Reto Hermann, Dick Huseman, and Peter
Trommler. The OpenCard framework. In
CARDIS'98, Louvain-la-Neuve, Belgium,
Sept. 1998. Third Smart Card Research
and Advanced Application Conference.

[9] The International Organization for Stan-
dardization and The International Elec-
trotechnical Commission. ISO/IEC 7816-
4 : Information technology - Identi�cation
cards - Integrated circuit(s) cards with con-
tacts, 9 1995.

[10] Naomaru Itoi and Peter Honeyman.
Smartcard integration with Kerberos V5.
In Proceedings of USENIX Workshop
on Smartcard Technology, Chicago, May
1999.

[11] S. R. Kleiman. Vnodes: An architecture
for multiple �le system types in sun unix.
In Proceedings of USENIX Summer Tech-
nical Conference. USENIX, 1986.

[12] RSA Laboratories. PKCS #11:
Cryptographic token interface stan-
dard. version 2.01, December 1997.
http://www.rsa.com / rsalabs / pubs /
PKCS/.

[13] SET Secure Electronic Transaction LLC.
SET standard technical speci�cations,
1999. http://www.setco.org/.

[14] Marshall Kirk McKusick, Keith Bostic,
Michael J. Karels, and John S. Quarter-
man. The Design and Implementation of
the 4.4BSD Operating System. Addison-
Wesley Publishing Company, 1996.

[15] SUN Microsystems. Java card technology.
http://java.sun.com:80 / products / javac-
ard/ index.html.

[16] MULTOS. http://www.multos.com/.

[17] Jim Rees. ISO 7816 library, 1997.
http://www.citi.umich.edu / projects /
sinciti / smartcard / sc7816.html.

[18] James F. Russell. Compatibility and con-

icts: PC/SC, OCF, Java card, MUL-
TOS ... In CardTech/SecureTech'98, vol-
ume 1, pages 97{101, Washington, DC,
April 1998.

[19] Assar Westerlund and Johan Danielsson.
Arla - a free AFS client. In Proceed-
ings of USENIX 1998 Annual Techni-
cal Conference, pages pp. 149 { 152,
New Orleans, Louisiana, USA, June 1998.
USENIX. http://www.stacken.kth.se /
projekt / arla.


