
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

USENIX Workshop on Smartcard Technology
Chicago, Illinois, USA, May 10–11, 1999

Object Lifetimes in Java Card

Marcus Oestreicher
Zurich Research Laboratory, IBM Research Division

Ksheerabdhi Krishna
Austin Product Center, Schlumberger

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

-
re-
tent
es
m-
th
he
 Ja-
rd

of

d
sis-
ms
el
d-
nt
v-
the
 an
e-
e

ng
ric-
ee
n-

art

if-
if-
igh-
vi-
g
nd

e-
nd
 in
b-
d

ies.

Marcus Oestreicher
Zurich Research Laboratory

IBM Research Division
Rueschlikon, Switzerland

oes@zurich.ibm.com

Object Lifetimes in Java Card

Ksheerabdhi Krishna
Austin Product Center

Schlumberger
Austin, TX 78726

kkrishna@slb.com
Abstract

Java Card promises the ease of programming in Java
to the world of smart cards. Java’s memory model how-
ever is resource intensive especially for smart card
hardware. Hence, adapting Java’s memory model to
Java Card must retain the easy programming para-
digm while enabling Java Card applications to maxi-
mize the use of smart card memory. To this end, the
Java Card 2.1 Specification [3] advocates an ad hoc
persistent memory model that foists an unnatural pro-
gramming paradigm and an inherently limited API.
In this paper we discuss memory model choices for
Java Card in the context of persistent systems. We pro-
pose the concept of a transient and persistent environ-
ment for encapsulating the transient and persistent ob-
jects in Java Card applications. While offering a sim-
ple programming model, it allows efficient sharing of
the memory resources among multiple applications
and enables garbage collection for Java Card.

1 Introduction

The Java [1] environment possesses a number of
features that make it’s adoption to smart cards attrac-
tive. A reasonable subset of the Java environment can
constitute the base for a multifunction smart card plat-
form. Applications can rely on standardized APIs and
may be compiled into an intermediate bytecode repre-
sentation enabling execution by a Java virtual machine.
The simplicity and wide acceptance of the Java pro-
gramming language is attractive to the smart card com-
munity where no standard language suitable for devel-
oping multifunction smart card applications has yet
been established. Finally, they can benefit from the
platform independence and security features provided
by the Java environment.

However, Java’s platform independence places sig-
nificant constraints on the specific target platform. Java
provides automatic memory management and does not
foresee any means of manual memory control. In par-

ticular, it does not provide explicit support for persis
tent objects. In contrast, a smart card application
quires random access to both transient and persis
memory. The limited amount of the memory resourc
available and their physical characteristics require si
ple and transparent manipulation of objects in bo
types of memory by the application. Hence, one of t
challenges in the design of the Java Card is adapting
va’s memory model to the constraints of smart ca
hardware.

Systems that require an intimate composition
long-lived data and programs are called persistent ap-
plication systems [6]. Since applications in a Java Car
are coupled with data, it enables the card to be a per
tent application system. Orthogonal persistent syste
[6] specially provide an appealing programming mod
for application development. Current smart card har
ware typically offers around 16K bytes of persiste
memory and nearly 1K bytes of transient memory. Gi
en such constraints a Java Card cannot provide
same degree of transparency and orthogonality as
orthogonal persistent system. While it may not be d
sirable to completely hide the lifetimes of objects in th
Java Card, it could be done in tandem with handi
some control to the programmer. The necessary rest
tions must be carefully chosen to provide a high degr
of programmer convenience while enabling a reaso
able utilization of the resources available in a sm
card.

In this paper, we present the choices underlying d
ferent Java Card memory models. In particular, the d
ferences, advantages, and drawbacks of each are h
lighted. The notion of the transient and persistent en
ronment is introduced as a solution toward simplifyin
Java programming on smart cards, data sharing, a
support for efficient garbage collection.

The paper is organized as follows. Section 2 d
scribes the typical memory layout in smart cards a
introduces the basic execution model of applications
a Java Card. Section 3 lists the different lifetimes of o
jects which result from the given execution model an
presents plausible allocation and placement strateg

s-

d
g
the
he

-
 ap-
ds
me
its
ly

ser-
her
er-

 in-
e

nd
k is
on

n
.
e

-

-

s

-

.

o-
Section 4 discusses concepts underlying persistent sys-
tems in general and their applicability to smart cards.
Section 5 outlines the approaches to introduce tran-
sience and persistence in the Java Card which were dis-
cussed during the Java Card specification process. Sec-
tion 6 introduces the basic concepts and usage of tran-
sient and persistent environments. Section 7 discusses
the implications of the transient environment on securi-
ty, memory reclaiming and object sharing contrasting it
with the approach taken by the Java Card 2.1 Specifica-
tion. Finally, we present our conclusions in Section 8.

2 Smart Card Memory and Java Card
Basics

Current and upcoming smart card hardware provide
very limited storage capabilities. The memory resources
typically consist of Read Only Memory (ROM), Ran-
dom Access Memory (RAM) and Electrically Erasable
Programmable Read Only Memory (EEPROM). EE-
PROM is used to store long-lived data. In contrast,
RAM loses its contents after a power loss and is thus
only available for temporary storage. Both EEPROM
and RAM can be read and written; however, write oper-
ations to EEPROM are typically thirty times slower than
to RAM and the possible number of EEPROM writes
over the lifetime of a card is physically limited. Another
difference lies in the physical size of each of these mem-
ory types. The physical size constraints on a smart card
dictate RAM/EEPROM ratios often resulting in consid-
erably smaller RAM in comparison to EEPROM.

A typical Java Card design places the operating sys-
tem, the virtual machine and one or more applications in
ROM. EEPROM is used to store applications which
have been loaded after a card has been issued. Java Card
applications, also referred to as applets, correspond to
Java packages and are not loaded as regular Java class
files [2]. Instead, a converter coalesces all the class files
that comprise the package into a compact representation
with minimal symbolic information. The converted
code is linked on the card against the system classes and
other required packages. It is up to the converter and the
virtual machine to assure the Java language protection
rules for downloaded code.

Once downloaded the applet is installed in a separate
step. The virtual machine calls the mandatory install
method which allocates required resources and registers
a persistent object, the applet instance, with the Java
Card runtime environment for future invocations. Ap-
plet execution is tailored around the server centric na-
ture of a smart card and takes place during sessions.
When a card is placed in a card acceptance device
(CAD) the runtime is initialized and awaits input. Com-
munication is handled by the underlying operating sys-

tem. An external application (the client) initiates a se
sion with a specific applet (the server) by sending a se-
lect command to it. The runtime marks the selecte
applet active and forwards the command by invokin
the applet’s select method. Each command sent by
client hence is forwarded and handled by invoking t
applet’s process method. The applet processes the com
mand and prepares a response which is sent after the
plet has returned from its invocation. A session en
when a new select command is received. The runti
deselects the currently selected applet by invoking
deselect method and initiates a session with the new
selected applet.

During a session, an applet can access both the
vices of linked packages and services exported by ot
applets. A client applet can ask a server applet for a s
vice by obtaining a reference to a shared object and
voke it freely during the session. When invoked, th
server object can check the identity of the caller a
grant the requested service. Note that the Java stac
completely unwound upon cessation of communicati
with the CAD.

3 Object Lifetimes

The object allocation, placement and invocatio
model influences the lifetime of objects in the system
Object lifetimes in persistent systems fall into one of th
following general categories [4]:

1. Transient (temporary) results in expression evalua
tions and local variables in procedure activation.
Data in this category resides in the individual byte
code frames and is of a primitive type. Java and
Java Card do not allow the explicit allocation of
objects on the stack which is especially limited on
the Java Card. The stack contents must only be
valid during applet invocation in a session.

2. Instance variables, class variables and heap item
whose extent is different from their scope.
Among these items are especially objects which
must be accessible during applet invocation or the
entire session. They must not be saved in case of
power loss. For example, objects of this type are
used to store the state of the communication, ses
sion keys or the communication buffer.

3. Data that exists between two program executions
Objects in this category cover data which must be
stored in EEPROM to survive a power loss.

4. Data that exists between different versions of a pr
gram or data that outlives the program.
The Java Card environment currently does not
address this category.

ny
that
e
x-
t be
a-
d
s.
e-
ce

nce
in-
 ob-
h-
 al-
o

-
er-
ses
y.
ail-
the
m-
ich
e

o-

e
t of

s,
].
le.
le

ges
 In-
e
er

in
en-
 of
m-
d a
-
in-
r

The object lifetime categories and the memory types
in smart cards give rise to the three following allocation
strategies for objects in a Java Card:

1. Objects are instantiated in RAM and are serialized
by the applet into EEPROM via a file system etc.
This strategy resembles the regular Java environ-
ment and of early Java Cards [11]. The applet
instantiates objects in RAM and stores their data
with the help of specific API functions into the
long-term store. Each applet has to implement the
functionality required for serializing and deserializ-
ing its state. There are two drawbacks with this
approach. First, the working set of an applet could
be larger than the available RAM. Second, the
underlying operating system must manage the con-
tents of the long-term store, i.e., it must provide a
name binding with the serialized state and a means
of checking the access rights of applets.

2. Object instantiation is always in EEPROM.
If objects are instantiated in EEPROM the language
protection rules can be used to verify the integrity
of the system.This provides an uniform access to all
the objects of an applet. This strategy is attractive
since most data manipulations are performed on
long-lived data. However performing all allocations
in EEPROM may never be feasible since writes to
EEPROM are extremely expensive and it’s life lim-
ited.

3. Object instantiation is in RAM and EEPROM.
The instantiation of objects with limited lifetime in
RAM saves space in EEPROM, increases the per-
formance and adds additional security in case of
sensitive objects like session keys which must get
lost in case of power loss. Long-lived data is placed
appropriately in EEPROM. The utilization of both
stores for object allocation and manipulation should
still aim at the benefits of object instantiations only
in EEPROM, i.e., allowing uniform access to
objects and relying on Java’s language protection
rules.

4 Persistent Systems

The Java environment is designed as a transient pro-
gramming environment. The Java Card environment
however must support access to both transient and per-
sistent objects within Java language expressions. Persis-
tent programming languages and environments strive to
enable such manipulations transparently [5]. Language
expressions manipulating persistent data are made to
appear similar to expressions operating on data with
shorter lifetimes. Other than transparency, persistent

systems provide different degrees of data type orthogo-
nality. Full orthogonality expresses the demand that a
instance can be persistent regardless of its type and
its lifetime may not be expressed at instantiation tim
[6]. In any case, the lifetime of data must be easily e
pressible by the programmer and persistent data mus
identifiable as such by a simple and consistent mech
nism. The principles of transparency, orthogonality an
identification serve as the basis for persistent system

Orthogonal persistent systems offer the highest d
gree of transparency and orthogonality and were hen
chosen as the basic architecture for adding persiste
to Java in the PJama project [7]. PJama allows any
stance to be persistent regardless of its type and any
ject is identified as being persistent by verifying reac
abilty from a persistent root set. Persistent objects are
ways manipulated in RAM and are lazily stabilized int
the long-term store.

5 Proposed Approaches

In a Java Card objects allocated in RAM must be im
mediately copied into EEPROM when assigned to a p
sistent reference. Otherwise, unexpected power los
will lead to illegal references and loss of data integrit
Since the working set of the applet can exceed the av
able RAM it can only be used as a cache. However,
extremely limited resources on a smart card make it i
possible to determine a suitable caching scheme wh
delivers sufficient results without assistance from th
programmer. It is worth noting that even large orthog
nal systems tend to be inefficient [10].

To counter inefficiency and provide control to th
programmer, some persistent systems limit the exten
one or more principles of orthogonal persistent system
i.e., they may restrict transparency or orthogonality [5
The programming style is affected as little as possib
This is crucial for the Java Card which touts the simp
and popular programming style of Java. Hence chan
to the language to support persistence are prohibited.
troducing lifetime aware bytecode instructions to th
virtual machine must be avoided as they would hind
upgrading to another memory model.

5.1 Transient Types

A common approach to introducing persistency
statically typed languages is to make persistency dep
dent on type. Persistent objects must be instances
classes inheriting from a specific superclass or must i
plement a specific interface. One proposal advocate
Persistence interface causing implementing class in
stances to be allocated in EEPROM, all other class
stances would reside in RAM. Alternatively, anothe

n-
e a
er-
rd

on
de-
n
ed

eir
 re-
c-
se
ef-
r-
e
re

d-

nt
r-
ver
by
 to
 a

be
ng
ad-
r
r

e
een
approach proposed a Local interface to mark class in-
stances to be allocated in RAM, with unmarked instanc-
es allocated in EEPROM.

There are two problems with this approach. Firstly,
references to transient objects in the persistent set lead
to dangling pointers in case of sudden power losses.
Since an applet acquires access to its state by its persis-
tent instance at invocation time, it is required to store a
transient reference in its persistent set as soon as it uses
a transient object. Resetting dangling pointers at the be-
ginning of a card session involves complex scanning
and is time consuming due the writes required to EE-
PROM. Secondly, it requires having two type hierar-
chies for classes whose instances may be transient or
persistent. This especially restricts the use of array ob-
jects which can either be persistent or transient but never
both. Additional classes simulating the behavior of
fixed built-in types maybe required as well. The result-
ing code bloat and the performance penalty incurred by
wrapper classes makes this approach unacceptable for
smart cards.

5.2 Transient Fields

The introduction of separate type hierarchies may be
avoided by using or extending particular language fea-
tures [8][9]. Changes to the language are forbidden in
Java as it affects programming style, requires educating
programmers and forces changes to the Java compiler.
Java however provides a transient keyword, a field
modifier that affects object serialization. Fields marked
transient are not part of the persistent state of the encap-
sulating object and are not serialized. It seems natural to
reuse the transient modifier in Java Card to mark fields
whose data must reside in transient memory and must
never be saved in the persistent image of the object. The
advantage of this approach is that the persistent set is
only connected with the transient object set at the loca-
tion of the transient fields. This allows for simpler and
efficient implementations for resetting the persistent set.

The main drawback of using transient fields is it’s
inability to express transience in a consistent manner.
The value of a reference type transient field is the refer-
ence itself. Since the transient keyword does not indi-
cate the lifetime of the referenced object it’s meaning
must be extended to include the transience of the refer-
enced object. The extended definition fails to specify the
lifetime of an object which is referenced by a transient
and a persistent field as well. Changes to Java semantics
also prevents future introduction of the transient key-
word with uniform semantics in Java Card.

5.3 Transient Data (Java Card 2.1 Specification)

Since the main requirement is to disable storing se
sitive and data requiring fast access to long-term stor
memory model may allocate data associated with c
tain objects in short-term store. The current Java Ca
2.1 Specification follows this approach and is based
two basic design decisions. Firstly, applets must be
signed to not expect any form of memory reclamatio
on the card. Applets are required to instantiate need
data at installation time and reuse it throughout th
lifetime. Unreferenced data cannot be expected to be
claimed and therefore new allocations may fail. The se
ond design decision is to avoid dangling pointers in ca
of sudden power loss by expecting all objects to be r
erenced persistently via EEPROM. Only the data of a
rays of primitive types can be allocated in RAM. As th
new bytecodes allocate objects in the persistent sto
special static factory methods makeTransientBoolea-
nArray, makeTransientByteArray, and makeTransient-
ShortArray are used for allocating only the object hea
er in EEPROM and the data in RAM.

Fig. 1: RAM usage between Applets

Although the data part of such objects in transie
memory is lost at power loss, the location and size info
mation in the persistent header reserves its space o
multiple card sessions. However, as RAM is shared
all available applets on the card it must be possible
limit the reservation of the transient data to less than
whole card session. Otherwise the entire RAM may
reserved after the installation of a few applets allocati
transient data. The factory methods therefore take an
ditional argument, the duration identifier which eithe
allows instantiations of arrays with ‘‘clear on reset’’ o
‘‘clear on deselect’’ duration. Arrays with the ‘‘clear on
reset’’ duration will keep their values during the whol
card session, i.e., their contents are not reset betw

CLEAR ON

CLEAR ON
DESELECT
data

EEPROM
RAM

Applet 1

Applet 2

RESET
data

Transient headers

CLEAR ON RESET

CLEAR ON DESELECT

d

in

ble

i-
vi-
nce
E-

is
ll

fer-

s in
ine
n-
uc-

nd
the
e
re.
res
 of
er

ever

p
ca-
d.
o-
multiple applet selections during a card session. The
value of arrays with the ‘‘clear on deselect’’ duration are
always cleared before their owning applet is selected.
This coarse grained lifetime specification allows over-
lapping the ‘‘clear on deselect’’ RAM space across dif-
ferent applets. Figure 1 shows an organization of the
transient memory using this overlap. RAM is split into
two segments, the ‘‘clear on reset’’ and ‘‘clear on dese-
lect’’ spaces which grow in opposite directions. Each
newly allocated “clear on reset” array gets allocated
from the globally reserved “clear on reset” space while
each newly allocated “clear on deselect” array gets allo-
cated at the beginning of the per applet “clear on dese-
lect” space. The runtime must ensure that these two
spaces do not overlap.

A consequence of this design is that the entire ‘‘clear
on deselect’’ space must be cleared at once before a new
applet is selected. If a package contains more than one
applet the ‘‘clear on deselect’’ space has to be shared by
all applets as they are allowed to share their transient ar-
rays as per the Java Card 2.1 Specification. On the other
hand, an applet shall allocate all its needed data, espe-
cially its worst case usage of transient data, at install
time. This can easily lead to the situation where the first
applet in a package, having access to a sufficient amount
of memory, will install successfully whereas the instal-
lation of a cooperating applet in the same package may
fail. The problem is compounded as the runtime is un-
able to verify the usage of two very important memory
resources pertaining to the applet, the required stack
space and the worst case usage of the transaction buffer.
These resources cannot be pre-calculated as they de-
pend on the card specific bytecode frames, implementa-
tion of the required packages, and the implementation of
the transaction mechanism in case of the transaction
buffer. This leads to a programming model where the
programmer is forced to allocate some memory resourc-
es in advance but still needs to check for their unavail-
ability at runtime.

The lack of transient objects and the restriction on
transient arrays especially effects the convenient Java
programming model. A programmer is forced to load
and store values from persistent objects into transient ar-
rays and vice versa. Additionally, since resources are
limited and differ from card to card, programmers have
to code to a least common dominator and cannot rely on
the flexible use of transient data. Not only will this force
programmers to use entirely persistent objects, the larg-
er RAM capacities of upcoming smart card hardware
will ironically remain unused. The different handling of
transient and persistent data also causes different tran-
sient and persistent object layout due to the indirect ac-
cess to transient data through a persistent header.

6 Transient Environment

Monk: Why would anyone hurry to create gardens and buildings an
monuments?
Lord Buddha: Everything is transient and nothing endures.

The problem of persistent and transient objects
Java Card can be stated as follows: How can the persis-
tent object model of Java Card be augmented to ena
flexible use of transient objects? The solution surpris-
ingly lies in introducing a mechanism that is symmetr
cal to the persistent environment. The persistent en
ronment consists of a persistent root, the applet insta
and a set of objects reachable therefrom allocated in E
PROM. Analogously, the transient environment
formed by a tree of objects with the difference that a
objects reside in RAM.

Both environments are separated in as far as re
ences to transient objects are forbidden to be held in the
persistent set. Storing references to transient object
the persistent store is prevented by the virtual mach
(VM) which throws an exception when such assig
ments are attempted. The Java (Card) bytecode instr
tion set uses different instructions to store primitive a
reference types; only the latter must be checked by
VM, making the overhead negligible compared to th
necessary EEPROM write operation in case of a sto
Assignments of persistent references in transient sto
need not be checked as it does not affect the integrity
the persistent store. Dangling pointers in case of pow
losses are avoided as transient references are n
stored in the persistent set.

Fig. 2: Using Transient Environments

The lifetime of an object is controlled with the hel
of an API mechanism that demarcates transient allo
tion defaulting to persistent allocation when not calle
As shown in Figure 2 the API is used to toggle the all
cation mode. Allocations between beginTransience and
endTransience are in RAM, defaulting to EEPROM.

public class DummyApplet extends Applet {
 public boolean select() {
 JCSystem.beginTransience();
 Object o = new Object();
 JCSystem.endTransience();
 JCSystem.setTransientEnvironment(o);
 return true;
 }

 public void short process(APDU apdu) {
 Object o;
 o = JCSystem.getTransientEnvironment();
 // use o
 }
}

as-
ec-

ca-
e

la-
a-
c-

ot
ac-
or
tor

fer-
ue
,
e
to
as
in

al

al-
te.
be
 be
an-
vi-

let
ts
c-
ct-
n-
heir
n-

ar-
e-
d

 of

an-
e
st

nal
RAM overflow is signaled by an exception similar to
how EEPROM overflow is signalled. This mechanism
resembles a typical transaction API wherein behavior of
state manipulation is toggled between a beginTransac-
tion and commitTransaction code section.

Allocated transient objects may be interconnected to
form a transient environment whose root can be regis-
tered with the Java Card runtime by invoking the set-
TransientEnvironment method. Where a particular per-
sistent environment is implicitly made available to the
applet during invocation of the process method, the ap-
plet can request its transient environment by explicitly
invoking the getTransientEnvironment method. This al-
lows accessing transient objects even when assignments
of transient object references to persistent fields are pro-
hibited.

The transient environment naturally fits in the cur-
rent execution model of Java Card applets. It may typi-
cally be built in the beginning of a session in the select
method. Transient data which must survive the session
is copied to the persistent store at the end of the session.
After the session, the transient environment is reset and
the designated RAM space is available for the next ap-
plet session. The ease of creating transient objects of
any type leads to a convenient programming style, re-
sults in better performance and more compact code. The
similarities between the transient and persistent envi-
ronment also simplifies virtual machine implementa-
tions where the same object layout may be used for both
the transient and persistent objects.

7 Implications

Apart from enabling a convenient programming
mechanism the transient environment scales into the fu-
ture when more smart card resources become available.
The only limitation introduced by the transient environ-
ment is the restriction on assignment. Future systems
may choose to remove this restriction and still provide
binary compatibility. The restricted assignment also en-
hances security in that an applet cannot store a reference
to a transient object which it received from the system
or from a different applet in its persistent set. Since the
object is only accessible during a session it cannot be ac-
cessed in situations not foreseen by the service provider.
For instance, it allows the deletion of a server applet
without the danger of dangling pointers in the client ap-
plet. The transient data approach is not upgradable in
large part due to the fixed lifetimes in the API. The tran-
sient space is statically split for the individual applets
which make temporary allocations and deallocation in
the future practically impossible. Lifetimes contradict
the ease-of-use of standard Java.

The transient environment also strengthens other
pects of the Java Card runtime, especially memory r
lamation and the sharing mechanism.

7.1 Memory Reclamation

While not addressed by the Java Card 2.1 Specifi
tion memory reclamation can be very effective for th
smart card environment. Clearly manual memory rec
mation cannot be allowed due to the security implic
tions and must be avoided in favor of garbage colle
tion. Surprisingly, EEPROM write performance and n
the size of a general garbage collector is a hindering f
tor with regards to a memory reclamation scheme. F
instance, a simple mark and sweep garbage collec
first annotates all reached objects and frees all unre
enced objects in a second pass [12]. It is most likely d
to the limited RAM size that the annotation information
i.e. the mark bits, must be written into EEPROM. Th
resulting performance penalties make it impossible
interrupt the applet execution for garbage collection
soon as memory is scarce but only at fixed points
time. However, cleaning up EEPROM is not as critic
as that of RAM.

7.1.1 Transient Environment Garbage Collection

 Typical applets allocate their persistent set at inst
lation time and limit the changes therein to data upda
New instantiations or complete replacement may
considered rare. The RAM space is limited and can
consumed quickly as soon as an applet allocates tr
sient objects which are not reused in the transient en
ronment but allocated only for the duration of an app
invocation. However, in case of transient environmen
garbage collection is not only feasible but indeed pra
tical. The transient environment can be garbage colle
ed completely separately from the persistent enviro
ment. Persistent objects need not be scanned as t
fields never reference transient objects. Our impleme
tation achieves satisfying results when invoking the g
bage collector upon return from the applet’s select, d
select, or process methods. The Java stack is empty an
the root set for the garbage collection consists only
the transient environment.

The same garbage collector may be used for cle
ing up the EEPROM. Due to the limited performanc
this should only be carried out after an explicit reque
by an applet or by a special command from an exter
application.

on-
an

on-
nt.
ent
e
vi-

t at
re-
-
the
ster
st
 the
ck-
the
ects
ge
s
n-
ion
ws
an
es-
nar-

ent
is
its
ing
i-
ets.
ed
e
ext

nt
le
p-

ent
st
be-
t is
ion
 its

ient
ient
ran-

ul
to
7.1.2 Limitations of Transient Data Memory
Reclamation

EEPROM garbage collection is also permitted by
the transient data approach. However, a different mech-
anism must be used for reclaiming RAM space. The
runtime can attempt to reuse the space for globally allo-
cated ‘‘clear on reset’’ arrays after their applets have
been deleted. It may also allow the increase of ‘‘clear on
reset’’ space after the applet with the most ‘‘clear on de-
select’’ usage has been deleted. The added complexity
stands in contrast to the low amount of memory which
can be reclaimed generally in this static environment.

7.2 Sharing

The flexibility of the transient environment is not
only afforded by the selected applet but also by the ser-
vices it uses. The Java Card environment distinguishes
and supports three different sharing scenarios:

1. An applet is linked against a separate package.
The package contains shared code used by different
applets to create instances of classes and invoke
methods in this package.

2. An applet has a reference to a shared object pro-
vided by a another applet.
The client applet requests the reference from the
runtime which forwards the request to the serving
applet and returns the received reference to the cli-
ent applet. The reference must be an interface type
and the virtual machine will refuse any other
attempts to access the methods specified by the
interface.

3. An external application collaborates with two or
more applets on the card.
The applets know about the collaboration and want
to keep access to their transient state as long as the
collaboration lasts.
The transient environment can provide a flexible use

of transient data in all three scenarios. The degree of
flexibility depends on the runtime providing support for
only one transient environment, multiple transient envi-
ronments and/or garbage collection.

7.2.1 Single Transient Environment

The transient environment plays well in the first sce-
nario wherein a shared package can either be given ac-
cess to the transient environment of its client applet or
can build its own transient environment. In the first case,
the applet and package transient environment must obey
Java type rules which involves the applet subclassing its
environment root class to the package environment root

class. In the second case, where the transient envir
ment of the applet and the package differ, the applet c
use a simple mechanism to adopt its transient envir
ment to contain the package’s transient environme
The applet has to reserve one node in its environm
for the root of the package environment. The first tim
it calls into the shared package it saves its current en
ronment in a local variable and resets its environmen
the runtime. Within the call the shared package can c
ate an environment for itself, register it and fulfill the re
quested service. Upon return the applet can save
package environment in its designated node and regi
its original environment. From now on the applet mu
always save its environment on the stack and register
package environment before it invokes the target pa
age. If the runtime provides a garbage collector, both
applet and the shared package can allocate local obj
which are not part of the environment and are garba
collected after the current invocation of the applet. A
the applet is in control of the shared package enviro
ments, it can reset their roots any time during the sess
and thus subject them to garbage collection. This allo
the optimization of memory usage for instance when
applet uses multiple packages alternately during a s
sion. The same mechanisms apply in the second sce
io.

The third scenario demands extending the transi
environment lifetime over an applet session. This
achieved by either requiring the applet to not reset
transient environment at the end of the session or us
a system method to retrieve it. The longer living env
ronment can then be shared by the collaborating appl
They manipulate it alternately until the last deselect
applet during the collaboration finally resets it. Th
runtime may then free the transient space for the n
session.

7.2.2 Multiple Transient Environments

Collaborating applets may have different transie
environments causing the runtime to support multip
transient environments at a time. Each collaborating a
plet creates and registers its own transient environm
with the runtime system and extends its lifetime to la
longer than its current session. The runtime switches
tween the transient environments whenever an apple
deselected and the next applet during the collaborat
is selected. When the last deselected applet resets
transient environment the runtime releases the trans
space. If a garbage collector exists, parts of the trans
space can be reclaimed when any applet resets its t
sient environment.

The support of multiple environments can be usef
in the second scenario to simplify programming and

y

ll

o

al

-

-
l

f
g.

ted
ope
ci-
ign
er
va
is-

el
n
to
encourage the full use of all available RAM. When a cli-
ent applet requests a reference from a server applet, the
request is forwarded by the runtime to the serving ap-
plet. The server applet creates and initializes its own
transient environment, registers it with the runtime and
returns a reference to the requested shared reference.
The runtime marks the serving applet as being part of
the current session and forwards the reference to the cli-
ent applet. Whenever the client invokes a method on the
server reference the runtime switches to the appropriate
transient environment. The server object can access its
transient environment and use it to execute the request-
ed service. When the client applet is finally deselected,
all transient environments of the participating server ap-
plets are also reset.

As opposed to the single transient environment the
management of the individual environments is up to the
Java Card runtime. This simplifies the programming
model but limits the control of the executing applet over
memory utilization. The Java Card runtime is not able to
release any of the participating environments prior to
the end of the session without the support of the shared
services or the request of the currently selected applet.

7.2.3 Limitations of Transient Data Sharing

The static memory model of the transient data ap-
proach fails to provide a flexible use of transient data in
any of the three scenarios.

For the first scenario, a shared package can only al-
locate transient data if it is called during the installation
of the applet. Moreover, it must connect its transient
data to the persistent set for later use.

For the second and third scenarios, both the shared
object and the collaborating applets have to keep their
transient information in globally reserved ‘‘clear on re-
set’’ arrays. A shared object cannot use the ‘‘clear on
deselect’’ arrays of its implementing applet as the
‘‘clear on deselect’’ space is reserved for the currently
selected applet, the client applet. This forces either the
global reservation of RAM by allocating ‘‘clear on re-
set’’ arrays or the renunciation of transient data. In the
first case shared applets can hog RAM causing denial of
service problems by preventing installation of any client
applet. In the second case the performance of EEPROM
will prevent the sharing of any complex services and
force each client to implement parts of or even the
whole service, defeating code reuse.

8 Conclusions and Future Work

The contributions of this paper are:

• We suggest a terminology and framework with
which to describe the issues underlying memor
models in Java Card.

• We identify the restriction that can be placed on
orthogonal persistent systems while retaining a
the benefits of persistent systems for the Java
Card programmer.

• We have presented other solutions attempting t
solve the problems of transient data and shown
their weaknesses. In particular we have shown
that the static memory model described in the
Java Card 2.1 Specification results in an unusu
programming model and restricts the possibili-
ties for memory reclamation and object sharing
to an unsatisfying degree.

• We have shown that, by making support for tran
sience explicit, a Java Card can provide a scal-
able API that can allow the manipulation of
transient data similar to the standard Java envi
ronment. The resulting dynamic memory mode
naturally fits Java Card’s execution model,
allowing the simple and effective deployment o
a garbage collector and enhances object sharin

The proposed environment has been implemen
and tested on a number of applets. In the future we h
to provide concrete benchmarks supporting its simpli
ty and performance to enable comparison of the des
choices. We hope the transient environment will furth
demystify smart card programming and permit Ja
Card programmers to truly enjoy the benefits of pers
tence.

9 Acknowledgments

We are deeply indebted to Peter Buhler and Micha
Baentsch for their invaluable input on implementatio
and many productive discussions. We are grateful
Stephan Hild for carefully reviewing the paper.

10 References

[1] Arnold, K. and Gosling, J., The Java Program-
ming Language, Addison-Wesley, 1996.

[2] Lindholm, T. and Yellin, F., The Java Virtual Ma-
chine Specification, Addison-Wesley, 1996.

[3] Sun Microsystems Inc., Java Card API 2.1 Speci-
fication,..//java.sun.com/products/javacard/
JavaCard21API.pdf

[4] Atkinson, M.P., Bailey, P.J., Chisholm, K.J.,
Cockshott, W.P. and Morrison, R., An approach to
Persistent Programming, Computer Journal,
26(4), 360-365, Nov. 1983.

[5] Hosking, A. L. & Moss, J.E.B., Approaches to
Adding Persistence to Java, Proceedings of the
First International Workshop on Persistence and
Java, Drymen, Scotland, Sept. 1996.

[6] Atkinson, M.P. and Morrison, R., Orthogonally
Persistent Object Systems, VLDB Journal, 4(3),
1995.

[7] Atkinson, M.P., Daynès, L., Jordan, M.J., Print-
ezis, T. and Spence, S., An Orthogonally Persis-
tent Java, ACM SIGMOD Record, Dec. 1996.

[8] Hosking, Anthony L. and Moss, J. Elliot B., Com-
piler Support for Persistence, COINS Technical
Report 91-25, March 1991.

[9] Schuh, Dan, Cory, Michael and Dewitt, David,
Persistence in E revisited - Implementation Expe-
riences, Proceedings of the Persistent Object Sys-
tems Workshop, Martha's Vineyard, MA, Septem-
ber 1990.

[10] Cooper, Tim and Wise, Michael, Critique of Or-
thogonal Persistence, International Workshop on
Object Orientation in Operating Systems, October
1996.

[11] Guthery, Scott. B., Java Card: Internet Computing
On A Smart Card, IEEE Internet Computing, pp.
57-59, Jan/Feb 1997.

[12] Jones. R. and Lins. R., Garbage Collection, Algo-
rithms for Automatic Dynamic Memory Manage-
ment, Wiley, 1996.

	1 Introduction
	2 Smart Card Memory and Java Card Basics
	3 Object Lifetimes
	4 Persistent Systems
	5 Proposed Approaches
	5.1 Transient Types
	5.2 Transient Fields
	5.3 Transient Data (Java Card 2.1 Specification)

	6 Transient Environment
	7 Implications
	7.1 Memory Reclamation
	7.1.1 Transient Environment Garbage Collection
	7.1.2 Limitations of Transient Data Memory Reclamation

	7.2 Sharing
	7.2.1 Single Transient Environment
	7.2.2 Multiple Transient Environments
	7.2.3 Limitations of Transient Data Sharing

	8 Conclusions and Future Work
	9 Acknowledgments
	10 References
	Object Lifetimes in Java Card

