
The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop

San Diego, California, September 14–18, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

XML Support for Tcl

Steve Ball
Zveno Pty Ltd

XML Support For Tcl

Steve Ball
Zveno Pty Ltd

http://www.zveno.com/
Steve.Ball@zveno.com

Abstract

XML is emerging as a significant technology for use
on both the World Wide Web and in many other
application areas, such as network protocols.
Documents written in XML have a rich, hierarchical
structure, the document tree. An application which is
to process XML documents must be able to access
and manipulate the document tree in order to be able
to examine and change the structure.

The DOM is a language-independent specification of
how an application accesses and manipulates the
document structure. TclDOM is a Tcl language
binding for the DOM. The TclDOM specification
provides a standard API for Tcl applications to
process a XML or HTML document.

TclXML is a Tcl package which provides a sample
implementation of TclDOM. It provides XML
parsers along with the tools needed to create a
hierarchical representation of documents which can
be conveniently processed by a Tcl script. There are
also facilities to check the validity of a document,
along with commands to produce document output.
TclXML provides a framework for parser and
validator modules which allows some or all of the
various components to be implemented in an
extension language.

Keywords: Tcl, World Wide Web, WWW, XML,
DOM, Parsing

A Brief Introduction To XML and DOM

XML

The eXtensible Markup Language, XML [XML], is a
Recommendation from the World Wide Web
Consortium (W3C) [W3C] which is a significant
simplification of SGML, intended to make a subset
SGML suitable for use on the Web. XML provides a
much more meaningful and rich way in which to
represent semantic structure in a document when
compared to HTML. With XML, a document author
can "call a Spade a <Spade>". That is to say,
elements can be given names which are meaningful
to the author and convey more of the semantics of the

document. These elements are defined using a
Document Type Definition (DTD), along with
allowed general entities. The DTD includes rules
which govern what elements or text are allowed to
occur inside each element. In contrast, HTML gives
the author a fixed set of tags to use, and those tags
have fixed semantics and behaviour.

XML has been designed with the goal of being easier
for tool developers to write software for processing
documents, so that there will be plentiful applications
available for handling XML. The syntax is far more
restricted than SGML, with most optional features
removed. For example, tag minimisation and
omission are not allowed so it is easy to detect the
end of an element. Empty elements must be explicitly
marked.

There are two levels of conformity for a XML
document. At the very least, a XML document must
be well-formed. A well-formed XML document
adheres to all of the syntactic rules of the XML
specification. All elements must have an end tag,
unless they are empty elements in which case the tag
must include a trailing slash, such as
. Element
attributes must have a value and the value must be
quoted. There may be no occurrances of illegal
characters, and so on. XML has been designed so that
a program can check that a document is well-formed
without having to use the document's DTD.

In addition to being well-formed, a XML document
may also be valid. A valid XML document conforms
to the rules laid out in its associated DTD. This
means that all elements have content which is
allowed according to the element's definition of its
content model in the document's DTD. All attributes
used in elements must also be permitted for that
element and their value must be of the correct type.
All attribute values which are used for identification
must be unique, and so on. Validity is a much
stronger assertion for a document than well-
formedness, but requires access to the document's
DTD and more processing time to check the various
rules.

XML is internationalised and support for Unicode is

a requirement of XML, so Tcl version 8.1 is well
positioned to be used for software applications which
handle and process XML documents.

The following document is a small example of a
XML document instance:

<?xml version="1.0">
<!DOCTYPE paper SYSTEM "paper.dtd">
<paper>
<title>TclXML Example</title>
<abstract>This is an example of a
XML document instance.
</abstract>
<introduction>XML uses the
<acronym><short>DTD</short>
<full>Document Type
Definition</full></acronym>
to define classes of documents.
Such a document is known as a
<definition>document
instance</definition>.
</introduction>
<point>A DTD is used to define the
elements and entities that are
allowed to appear in a document.
Empty elements have a trailing
slash:
<figure image="figure-1.png"/>
</point>
<conclusion>XML is way better than
HTML.</conclusion>
<references></references>
</paper>

DOM

The Document Object Model (DOM) [DOM] is a
language-neutral specification of a standard
Application Programming Interface (API) for both
accessing the features and the content of a document
and creating or modifying documents. Documents are
in the form of a tree and the DOM has methods of
accessing properties of the tree nodes. DOM provides
a core set of features and specific features may be
provided for certain markup languages. In the first
instance, DOM is providing a specification of
features for XML and HTML. The aim of the DOM
is to allow application developers to write software
which manipulates a document and to use whichever
programming language is suitable for the task. The
same underlying constructs will be available in
whatever language the developer chooses.

DOM already has language bindings for Java and
ECMAscript. Many tools are being written in Java
for processing XML, and standard interfaces are
starting to emerge for Java components, such as

XAPI-J and SAXDOM. A language binding for Tcl
is discussed in this paper.

Other Proposed Standards

XML will never replace HTML because XML does
not supply any of HTML's semantic features, in
particular the elements which provide presentational
and/or behavioural semantics such as STRONG, EM,
UL and FORM. HTML elements perform a function
when they are used in a document, whereas XML
elements do not. XML elements only provide
syntactic declaration of a document's structure. Of
course, this is what makes XML useful for a wider
range of applications than HTML.

In order to provide certain semantics for the elements
used in a XML document other facilities are required.
A number of languages have been proposed for these
purposes. The XML Link Language, XLL, provides
the hyperlinking model for XML. XLL has been
derived from TEI and HyTime and as a result will be
a much richer model than HTML's. For example,
XLL will allow bidirectional and multi-destination
links, as well as allowing link targets to specify and
use the structure of the destination resource. In order
to render XML documents for viewing or printing a
stylesheet language will be used. Either Cascading
Style Sheets (CSS) [CSS] will be used or the new
proposed XML Stylesheet Language (XSL). XSL
will also include scripting.

Tcl Support For XML

Tcl can be very useful for processing and generating
XML documents, just as Tcl is useful for handling
HTML documents in CGI scripts. There are many
applications which may be able to use a scripting
language for document processing, both in GUI and
non-GUI modes and in standalone, server and client
environments.

Since applications will have varying requirements,
different supporting libraries may be used to process
documents. Some of these may be implemented
entirely in Tcl, for cross-platform portability, some
may use C or C++ extensions to improve
performance and some may interface with Java
components. Ideally, there will be a standard
programming interface for applications written in Tcl
to access the document structure for processing. It is
the goal of TclDOM to provide that standard
interface, based upon the DOM specification.

XML support in Tcl has two distinct parts. Firstly,
TclDOM is a language binding for the DOM.

TclDOM provides an implementation-independent
specification of a Tcl API of the DOM for Tcl scripts
to access and manipulate XML and HTML
documents. Secondly, TclXML is a sample
implementation of TclDOM which provides XML
parsers and generators.

Zveno is making the TclDOM specification and
TclXML freely available. Both the TclDOM
specification and the TclXML distribution may be
found on the Zveno website [TCLXML]:
http://www.zveno.com/zm.cgi/in-
tclxml/

TclDOM

TclDOM is a Tcl language binding for the DOM. The
specification details how to access DOM features
using Tcl constructs. The goals for TclDOM are: to
provide access to all features of the DOM from a Tcl
script, to allow features from other DOM-compliant
languages (such as Java) to be used in conjunction
with Tcl scripting and finally to provide an interface
which uses conventions familiar to Tcl developers.

Access to all of the features of the DOM has the
advantage of familiarity to developers who have a
previous knowledge of the DOM. The DOM is also a
collaborative design effort which ensures that the
interface will be comprehensive, allowing sufficient
expressiveness of the interface for a general-purpose
document scripting library such as TclXML.

Providing all of the DOM features goes a long way
towards allowing access to DOM implementations in
other languages, because there is then a
straightforward mapping between the
implementations. It is fair to say that the majority of
work in writing XML processors is being done using
Java, so an interface to Java is essential for TclXML
to leverage this activity. Fortunately, TclBlend and
Jacl give easy access to Java classes from Tcl scripts.

TclDOM Interface Design

Tcl and Tk use a number of conventions to make Tcl
scripting easier for developers. TclDOM will adopt
these conventions in the design of its API so that Tcl
developers will find it easy to use. For example,
using Tcl commands to manipulate objects and the
use of configuration options. The design of the
TclDOM API must take into consideration that an
application may need to process more than one
document concurrently, so a single hierarchical
model, such as Tk's widget hierarchy, would be
unsuitable. For example, a XML document browser

may need to access the document's tree structure
while at the same time accessing the document's XSL
stylesheet, which is itself a XML document.

Previous Work

Uhler's html_library

Stephen Uhler wrote an all-Tcl HTML parser called
html_library [Uhler95]. This library was
sufficiently generalised internally to be easily
adapted for parsing XML documents. Indeed, the
tokeniser which is part of the Tcl XML parser in
TclXML is derived from html_library .

html_library translates a HTML or XML
document into a series of calls to a Tcl procedure.
Hence, it is an event-based parser where the
application is notified of the start and end of
elements. The parser does no checking for well-
formedness or validity - all further processing is left
to the application. This parser does not provide a
good model for TclDOM, since the DOM uses a tree-
based view of the document structure.

Plume

Plume [Ball98A] is a general-purpose WWW
browser. Plume version 1.0 (never officially released
publically) extended the html_library parser to
build a tree representation of the parsed HTML or
XML document. This representation was then
presented to the application with the tree structure, in
a format known as "XAPI-Tcl", the XML API for
Tcl. XAPI-Tcl used a nested Tcl list structure to
represent the document tree, with certain commands
used to distinguish between elements, character data,
processing instructions, and so on. For example, the
document example given above would be represented
as:

parse:pi xml {version 1.0} {}
parse:pi DOCTYPE {SYSTEM paper.dtd}
{}
parse:element paper {} {
 parse:element title {} {
 parse:text {TclXML Example} {} {}
 }
 parse:element abstract {} {
 parse:text {This is an example of
a XML document instance.}
 }
 parse:element introduction {} {
 parse:text {XML uses the }
 parse:element acronym {} {
 parse:element short {} {
 parse:text DTD {} {}

 }
 parse:element full {} {
 parse:text {Document Type
Definition}
 }
 }
 parse:text {to define classes of
documents. Such a document is known
as a } {} {}
 parse:element definition {} {
 parse:text \
 {document instance} {} {}
 }
 parse:text . {} {}
 }
 parse:element point {} {
 parse:text {A DTD is used to
define the elements and entities
that are allowed to appear in a
document. Empty elements have a
trailing slash: }
 parse:element figure {image
figure-1.png} {}
 }
 parse:element conclusion {} {
 parse:text {XML is way better
than HTML.}
 }
 parse:element references {} {}
}

This format may be interpreted as a (nested) Tcl list
or evaluated as a Tcl script. Internally the parser,
xml::parse , manipulates the document as a Tcl
list. Since in Tcl version 8.0 (and above) list traversal
is relatively fast the parser also returns the parsed
data structure as a Tcl list. However, this format is
not suitable for evaluation so a command,
xml::cvtscript , is provided to convert this
representation into one which may be evaluated, as
shown above.

To facilitate access to the data structure using Tcl list
commands, in particular the foreach command,
dummy arguments are appended to the entries used
for text and processing instructions. This allows a
construct to be used such as:

foreach {type arg1 arg2 arg3}
[xml::parse $MyDocument] {
 switch $type {
 parse:element {
 # Process element
 # arg1 is the tag name
 # arg2 is the attribute list
 # arg3 is the element content
 }

 parse:text {
 # Process character data
 # arg1 is the data
 # arg2 and arg3 are unused
 }
 parse:pi {
 # A processing instruction
 # arg1 is the PI name
 # arg2 is data for the PI
 # arg3 is unused
 }
 }
}

As discussed above, an alternative way to process a
document is to evaluate the parsed data structure. All
arguments are appropriately quoted, so this is a safe
operation to perform. In this case, the application
defines procedures with the same name as those
names used to distinguish the features of the
document. By default, these are:

parse:element

To denote an element, option -
elementcommand .

parse:text

To denote character data, option -
textcommand .

parse:pi

To denote a processing instruction, option -
picommand .

parse:comment

To denote a comment, option -
commentcommand.

Different names may be used by specifying options
to the xml::parse command. This processing
method may be used as such:

proc parse:element {name attributes
content} {
 eval $content
}
proc parse:text {text unused
unused} {
 puts $text
}

eval [xml::cvtscript [xml::parse
$MyDocument]]

The disadvantage of using an explicit Tcl
representation for the parsed data structure is that the
opportunity is lost to implement the document tree
using another language, such as C or Java. Accessing

and manipulating the tree structure may be quite slow
using Tcl. Also, it can be difficult to dynamically
modify the document structure, for example for
document editing purposes, and to navigate the tree
from an arbitrary starting point, for example if a tree
node is passed as an argument.

CoST

CoST [English96] is a system for processing SGML
documents written by Joe English based on James
Clark's sgmls library. It has been adapted for use
with Tk in an application called CoSTWish [PM-
R96], and is being used for processing XML
documents for the DOM specification [Nicol98].

CoST's API is not directly suitable for use with
TclDOM. CoST has the notion of a document node,
but nodes are not exposed to the application and there
is no equivalent to a DOM "Iterator" for traversing
sequences or trees of nodes. Instead, CoST supplies
explicit methods for performing iterative operations
on document tree nodes, such as withNode or
foreachNode . In addition, CoST does not provide
support for creating or modifying documents, nor
does it provide access to the document's DTD.

Another difference between DOM and CoST is the
notion of a current node. In CoST there is always a
node which is current, and operations may be
performed upon that node by CoST methods.
However, in the DOM no actual node is specified as
being current, instead there is a pointer to the position
between two nodes. The DOM then allows the node
before or after the current pointer to be retrieved. The
DOM specifies node positions in this way to allow
traversal of a dynamically changing document tree.
With the DOM there is no danger of the current node
being deleted and so the current node reference
becoming invalid.

The TclDOM API

A preliminary API for TclDOM has been designed to
satisfy the constraints outlined above. The namespace
dom shall be reserved for use by the TclDOM
package. Layered packages may also be used for
supporting specific markup languages. The
namespaces xml and html are initially reserved for
XML and HTML respectively.

DOM is defined using the OMG IDL interface
specification, a language-neutral definition language.
This presents some difficulties for defining the
TclDOM specification because IDL is object-

oriented, whereas Tcl is not. Common Tcl
conventions are used to overcome this problem, by
defining class creation commands and object instance
commands. TclDOM defines a number of commands
within the dom namespace which correspond to the
IDL interfaces defined in the DOM specification.
These commands produce and accept "tokens" as
arguments for referring to nodes in the document
tree. The DOM implementation may use these tokens
to lookup the node in an internal data structure. This
allows for efficient implementation in extension
languages.

The DOM specification provides a class for accessing
a list of nodes and a class to manipulate strings.
These are unnecessary in Tcl, as Tcl already has a
rich set of primitives for manipulating lists and
strings, but these interfaces may be emulated for the
sake of compatibility. TclDOM defines methods for
retrieving a list of the children of a node, the parent
of a node, the list of attributes for an element, and so
on. An application may use these methods to traverse
the document tree, much like a Tk script traverses the
widget hierarchy. Tcl lists are ordered, which is an
important property for representing the children of an
element node. One potential problem with this
approach is that in an application where the
document is being dynamically updated the
document tree may change after a list of nodes has
been generated. However, this may also be seen as an
advantage when compared to Plume's nested list
approach where changing the document tree can be
cumbersome.

Attribute lists are also defined in terms of a Tcl list,
but are represented as name/value pairs. This is
convenient for use in conjunction with the array
set Tcl command for accessing attributes via a Tcl
array. Attribute lists are unordered, so storing these in
a Tcl array is satisfactory.

The command necessary to perform parsing and
serialisation a XML document instance is not
explicitly provided by the DOM specification. For
TclDOM these functions may be made implicit by
defining that XML documents are stored as an
internal representation of a Tcl Object. In this way, a
XML document will be stored initially as a string, but
when accessed by a DOM function it will be parsed
into the implementation's internal data structure.
When the string representation is required the internal
structure is serialised. The only problem with this
approach is that an implementation would be difficult
to write as a pure Tcl script, since the internal
representation of a Tcl Object cannot be accessed

from the Tcl script level.

Example

The following is an example of creating a document
using TclDOM. This example creates the first few
elements of the example given earlier, modifies the
document and then saves the XML text in a file. Note
that this interface is a preliminary one based on the
20th July 1998 draft version of the DOM Core
specification.

Implicitly parse a document
set text [dom::text cget -nodeValue
 [lindex [dom::node children
{<Example>Sample Text</Example>}]
0]]

Create a document in memory

set docRoot [dom::document
 createDocumentFragment]
set paper [dom::document
 createElement $docRoot paper]
set title [dom::document
 createElement $paper title]
dom::document createTextNode $title
 {TclXML Example}
dom::document createTextNode
 [dom::document createElement
$paper abstract] {This is an
example of a XML document instance}
set in [dom::document
 createElement $paper introduction]
dom::document createTextNode $in
 {XML uses the }
set acronym [dom::document
 createElement $in acronym]
dom::document createTextNode
 [dom::document createElement
 $acronym short] DTD
dom::document createTextnode
 [dom::document createElement
 $acronym full] {Document Type
 Definition}
dom::document createTextNode $in
 {to define classes of documents.
 Such a document is known as a }
dom::document createTextNode
 [dom::document createElement
 $in definition] {document

 instance}
dom::document createTextNode $in .

Add an ID attribute to <abstract>

Search for the element
foreach child [dom::node children
 $paper] {
 if {[dom::node cget -nodeType] ==
"element"} {
 if {[dom::node cget -nodeName]
== "abstract"} {
 dom::element configure -
attributes {ID abc123}
 break
 }
 }
}

Write out the XML document

set ch [open example.xml w]

No explicit serialisation
puts $ch $docRoot

close $ch

TclXML

TclXML is a Tcl package which provides the
facilities needed by a Tcl script to parse XML
documents, traverse and manipulate their structures
and to generate XML documents. The package
provides an implementation of TclDOM (see below)
for accessing and manipulating the document
structure. It also provides a framework for the various
components needed to parse and generate documents,
allowing different implementations to be used
together in a seamless fashion.

Applications wishing to use TclXML will have
different requirements, both in terms of functionality
and in terms of performance. Some applications may
require an event-based parser, others may require a
tree-based representation. An application may only
need to check that a document is well-formed,
whereas another may need to validate its documents.
Figure 1 outlines the various requirements needed.

Figure 1: XML Processing Requirements of Applications

At present TclXML provides two non-validating
XML parsers. A "native" parser written entirely in
Tcl and a Tcl interface to James Clark's expat
[Clark98] parser called TclExpat. Both of these
parsers are event based, ie. they produce a stream of
"document events", such as the start and end of
elements. TclXML also provides a utility to construct
a tree based representation of the document, the Tree
Builder. This utility uses the event stream produced
by either of the parsers to construct the document
tree. Finally, TclXML will provide a document
validator. The validator will include a DTD parser
and will check the complete tree representation of a
document for validity according to the document's
DTD.

All of these facilities have been exposed to the
application developer, since the different parts may
be useful for different applications. Some application
may process a XML document as a stream, in which
an event-based parser is most useful. Other
applications may need to traverse the document
structure, in which case a tree-based parser is
required. Also, the modular construction of the
TclXML toolkit, makes it a simple matter to replace
components of it with packages written in other
languages. TclXML already includes expat, which is
written in C, as an example.

An event-based parser which is used within the
TclXML framework is configured to issue calls to the
TclXML Tree Builder, which then issues calls to the
TclDOM module to construct the document tree. A
tree-based parser would make calls directly to the
TclDOM module. The Tcl application can call the

same commands to construct a document in-memory
itself.

Compliant Parsers

As can be seen from Figure 2, TclXML aims to allow
any compliant parser to be used as a component of
the framework. An example might be to replace the
built-in Tcl parser with a SAXDOM-compliant parser
written in Java. Once a driver is written for the
SAXDOM interface, any parser written using that
interface can be used with TclXML.

TclExpat

An Tcl extension, called TclExpat , has been
created to provide an interface to James Clark's
expat XML parser. This extension has been written
for Tcl version 8.0 and 8.1 (alpha2) as a dynamically
loadable library. The extension has been tested on
Linux, Solaris and HP/UX. Compiling the extension
on other platforms supported by Tcl should present
no difficulties. An expat parser is created using the
expat command. When a parser is created a
corresponding Tcl command is registered to access
the parser, in the usual Tcl fashion. expat allows
callbacks to be registered for various "document
events" such as the start of an element, the end of an
element, character data, processing instructions, and
so on. The purpose of TclExpat is to allow Tcl
scripts to be invoked as these callbacks. An
application may configure a parser with various
options to set the callback scripts. Certain callback
scripts have arguments appended to them before
evaluation, such as the name of an element and its
attribute list for the start of an element.

Figure 2: TclXML Modular Structure

The main callback options for the TclExpat parser
are as follows:

-elementstartcommand name
attributes

Invoked when an element starts. Arguments are
the name of the element and its attribute list,
given as a name-value paired list.

-elementendcommand name

Invoked when an element ends. The name of the
element is appended.

-datacommand data

Invoked when character data is encountered. The
data is appended.

-processinginstructioncommand name
data

Invoked when a processing instruction is
encountered. Arguments are the name of the
processing instruction and the instruction's data.

-defaultcommand data

This callback is invoked when data is
encountered for which there are no other
handlers registered.

In addition to supporting straightforward callback
scripts, TclExpat also allows these scripts to use
the continue and break commands to alter how
the document is processed. If the callback script
returns a TCL_CONTINUE code then callback
invocation is suspended until the currently open
element is closed. A return code of TCL_BREAK
causes all further callback invocation to be skipped.
If a callback script returns an error condition all
further callbacks are skipped and the parser also
returns an error condition. TclExpat handles
aborting the processing of document callbacks even
though expat itself does not support this feature.

An example of using TclExpat is as follows:

package require expat

set parser [expat xmlParser]
$parser conf -elementstartcommand

 CountElements
$parser conf
 -processinginstructioncommand PI

proc CountElements args {
 incr ::count
}

proc PI {name args} {
 if {[regexp
{break|continue|error} $name]} {
 return -code $name "$name
due to processing instruction"
 }
}

set result {}

set count 0
$parser parse {<?xml
version="1.0"?>
<!DOCTYPE Document SYSTEM
"Document.dtd">
<Document>
<Visible>This element is
processed</Visible>
<Interrupted>This element is
skipped <?break?>
<NotCounted/>
</Interrupted><NotCounted/>
</Document>
}
lappend result $count

set count 0
$parser reset
$parser parser {<?xml
version="1.0"?>
<!DOCTYPE Document SYSTEM
"Document.dtd">
<Document>
<Visible>This element is
processed</Visible>
<Interrupted>This element is

skipped <?continue?>
<NotCounted/>
</Interrupted><Counted/>
</Document>
}
lappend result $count

puts $result

The output of this script would be 3 4 .

Document Generation

When data stored in an internal data structure is
converted to a XML representation, the data is said to
be serialised. In this way, a XML document may be
generated by a program.

It is proposed that TclDOM-compliant
implementations store their documents as the internal
representation of a Tcl Object. When a Tcl script
requires such an object in a string format, the object
will serialise the document, thus generating a XML
document. This process may apply to an entire
document, a document fragment or an element
hierarchy. After serialisation the document is just a
plain Unicode string and the application may write it
to a file, a network channel and so on.

Performance

Tests have been conducted to investigate the
performance of the TclExpat extension and the all-
Tcl TclXML parser. The expat XML parser source
code distribution includes a well-formedness checker.
The output of this program is a normalised version of
the XML input file. A Tcl version of this program,
using either the TclExpat extension or TclXML
parser, which accepts the same inputs and produces
the same output, was written for the purpose of
running comparison tests. Figure 3 shows the
performance comparison.

Figure 3: Performance Comparison of C Program with TclExpat and TclXML.

The timing data was calculated using a version of
TclExpat and TclXML compiled against Tcl
version 8.0, which does not support Unicode. Tcl
version 8.1 alpha2 was not used because its regular
expression engine is known to have poor
performance as it has not yet been performance
optimised. The tests were conducted on a Sun
UltraSPARC 2.

The tests indicate that the Tcl script using the
TclExpat extension is approximately 10 times
slower than the equivalent C code, and the full Tcl
version is 20 times slower. Given that the only
difference between the two versions of the Tcl
program are that the all-Tcl version must also parse
the XML document in Tcl, it would appear that the
performance loss in the TclExpat version is due to
the task of writing the normalised XML document. A
10 to 20 times performance loss for Tcl scripts when
compared to C code is acceptable. From this we can
conclude that the TclExpat extension adds
minimal overhead to expat for parsing XML
documents. Further testing on more complex
applications will be required to draw conclusions on
the feasibility and/or efficiency of using Tcl to
process XML documents, but this comparison test is
encouraging.

An important point to note is that the C program
included with the expat distribution is 653 lines of
code. The Tcl script developed using the TclExpat
extension or TclXML package is only 89 lines of
code. This indicates that writing document processing
applications is significantly more productive using

Tcl.

Application Examples

Plume's XML support and TclXML are being used in
two applications. Firstly, Steve Ball has written a
book, titled "Web Tcl Complete" [Ball98B]. The
publisher, McGraw-Hill, required the manuscript to
be delivered as plain, double-spaced text, along with
code and script examples to be included on a CD-
ROM. However, it was also desirable to produce
drafts of the chapters for the Web.

To meet all of these requirements the book was
written in XML, with markup used to identify code
examples along with other structural features. Two
simple scripts were written, one to translate the
documents into HTML and another to output plain
text while at the same time extracting the code
examples. The tree-based document representation
allowed these scripts to be written quickly and easily.
These scripts used the Plume XML support library,
which provided some valuable experience to guide
the development of the TclDOM specification.

Another application is an Intranet development for
the Department of Foreign Affairs and Trade of the
Australian Federal Government. For this project it
was decided to store corporate documents in XML
format, to allow rich structuring of the information
for improved searching and vendor- and platform-
independence of the data. To support the current
generation of Web browsers, the XML documents are
translated into HTML on-the-fly at the time of

document delivery. If the translation required is
straightforward an event-based parser is used. An
event-based parser allows large documents to be
delivered incrementally, thus reducing the latency of
document delivery and improving the perceived
responsive of the system to the user. More complex
translations use the tree-based representation of the
document, which allows advanced formatting
depending on the content of elements. These
technologies are augmented with Tcl microscripting,
using the Tcl Web Server [Tclhttpd], to provide a
highly dynamic Web site.

Conclusion

An Application Programming Interface standard is
being developed to provide a Tcl language binding
for the DOM, known as TclDOM. TclDOM provides
the means to create XML documents, as well as
access and traverse their document structures. DOM
supports both XML and HTML, and so too will
TclDOM. A single interface to both standards will
simplify the development of Tcl applications which
wish to process both XML and HTML documents.

A Tcl package has been developed, called TclXML,
which provides a sample implementation of the
TclDOM. TclXML includes a non-validating, event-
based XML parser written in Tcl, as well as a Tcl
interface to the expat parser. Modules are, or will
be, provided to create the document tree, validate
documents and produce XML or HTML output.
TclXML is being designed to take advantage of the
significant number of Java packages that are
available for processing XML documents.

XML, DOM and other related standards are, or will
be, Recommendations of the World Wide Web
Consortium which will have a major impact on the
World Wide Web, as well as making inroads into
application areas which currently use SGML. Many
network protocols and document formats are
proposing to use XML as their data syntax, such as
CDF, RDF and PGML to name but a few. This
means that it is very important for the Tcl language to
be able to efficiently process XML documents, in
order to be able to support the development of
applications which make use of XML. Tcl 8.1 has the
advantage that it supports Unicode, though Tcl 8.0
may also be used for western character sets.

Given the increasing importance of XML for a wide
range of application development it is the author's
opinion that XML support of some form must be
included in the core Tcl distribution. TclXML is

being distributed under a license that permits it to be
added to Tcl. It is interesting to note that Perl is also
undergoing development to include Unicode and
XML support [Perl]. Tcl has a significant advantage
in that it is already Unicode-enabled, and so has a
lead on Perl development.

References
[TCLXML]
Zveno Pty Ltd. Tcl Support For XML.
http://www.zveno.com/zm.cgi/in-tclxml/

[XML]
Tim Bray, et al. Extensible Markup Language.
World Wide Web Consortium.
http://www.w3c.org/TR/

[W3C]
World Wide Web Consortium. http://www.w3c.org/

[DOM]
Lauren Wood, et al. Document Object Model.
World Wide Web Consortium.
http://www.w3c.org/TR/

[CSS]
Hakon Lie, et al. Cascading Style Sheets.
 http://www.w3c.org/Style/

[Ball98A]
Steve Ball. The Plume WWW Browser.
http://plume.browser.org/

[Ball98B]
Steve Ball. Web Tcl Complete
McGraw-Hill, New York.
http://www.zveno.com/zm.cgi/in-wtc/

[Uhler95]
Uhler, S. html_library.
 ftp://ftp.smli.com/research/tcl/html_library.tar.gz

[Clark98]
James Clark. Expat XML Library.
http://www.jclark.com/xml/

[English96]
Joe English. CoST. http://www.art.com/cost/

[PM-R96]
Peter Murray-Rust. CoSTWish.
http://www.venus.co.uk/omf/costwish/

[Nicol98]
Gavin Nicol, Inso Corporation. mailto:gtn@inso.com

[Tclhttpd]
Brent Welch, Scriptics Corporation.
http://www.scriptics.com/
[Perl]
Larry Wall. http://perl.oreilly.com/

