
USENIX Association

Proceedings of the
FREENIX Track:

2003 USENIX Annual
Technical Conference

San Antonio, Texas, USA
June 9-14, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 179

The CryptoGraphic Disk Driver

Roland C. Dowdeswell John Ioannidis
elric@imrryr.org ji@research.att.com

The NetBSD Project AT&T Labs – Research

Abstract
We present the design and implementation of CGD,

the CryptoGraphic Disk driver. CGD is a pseudo-device
driver that sits below the buffer cache, and provides an
encrypted view of an underlying raw partition. It was de-
signed with high performance and ease of use in mind.
CGD is aimed at laptops, other single-user computers or
removable storage, where protection from other concur-
rent users is not essential, but protection against loss or
theft is important.

1 Introduction
The number of laptop users is increasing continuously,
and with it the amount of sensitive data that resides out-
side traditional data protection mechanisms—physical
(security guards) or electronic (firewalls). There have
been several well-publicized cases of top executives hav-
ing their laptops lost or stolen, with highly sensitive
corporate data in them [3]. In fact, any potentially re-
movable storage suffers from such threats, as the case
of the missing disk drives from a government research
lab around 2000 [1] demonstrates. Some of the cases
involved the violation of doctor–patient privilege [10]
which may expose doctors or hospitals to liability for
disclosing confidential patient data. When computers
are retired, the hard drives may contain sensitive data,
complicating their disposal. Cryptography provides the
ultimate protection in such cases, but while there exist
many techniques and systems that employ cryptography
to protect files, many of them are cumbersome to use,
require expertise beyond that of the common user, or
(unfortunately, in the case of many commercial systems)
offer less security than advertised. We review some of
these approaches in Section 4.

There are many existing solutions to this problem,
such as CFS[4], TCFS[5], OpenBSD’s vnd(4) encryp-
tion, FreeBSD’s GEOM encryption, Linux’s loopback
encryption, Cryptfs[17] and NCryptfs[16]. CFS and
TCFS operate over the file system layer and for that rea-
son are well suited to encrypting files stored over a dis-
tributed file system such as NFS. CFS is implemented
as a userland NFS server and gains much in the way of
portability, but unfortunately gains all of the drawbacks
of NFS in the process. The semantics of NFS even on
the local machine make file locking less reliable, make

caching of data blocks less effective and have a serious
overall impact on performance. CFS also does not pro-
tect the filesystem metadata as it encrypts each file sep-
arately and does not encrypt file system meta-data. It
may be possible in many scenarios to get much of the
information that is desired simply by examining the di-
rectory layout. TCFS also uses NFS as its transport, but
operates as an NFS client rather than a server. TCFS has
many more features than CFS, but also shares the draw-
backs of using NFS.

To fulfill the needs for secure file storage in a laptop
environment, we built the CryptoGraphic Disk (CGD).
CGD is a device driver that looks just like an ordinary
disk drive, and encrypts an entire real disk partition. It
is thus suited for single-user environments (mostly lap-
tops) where protection from other users on the same ma-
chine is not essential, but protection against physical loss
is paramount, as is high performance. CGD was written
for and is available in NetBSD, but can be readily ported
to any other BSD-derivative with very few changes.

This is a similar approach to that taken by OpenBSD’s
vnd(4) driver, FreeBSD’s GEOM driver and Linux’s
loopback mounts. Each of these has a few drawbacks.
OpenBSD’s vnd(4) driver and FreeBSD’s GEOM driver
do not present a modular framework for defining encryp-
tion methods which we discuss in Section 2. We dis-
cuss some of the drawbacks of a vnd approach in Sec-
tion 2.1. In Section 2.2, we discuss how OpenBSD’s
vnd(4) driver, FreeBSD’s GEOM driver and Linux’s
loopback mounts do not have flexible key generation
mechanisms, do not allow for n-factor authentication
and do not adequately protect from dictionary attacks
against the pass phrase.

2 Architecture and Implementation
In setting out to create a secure local storage facility
for Unix workstations, the main design considerations
were flexibility, modularity, performance and robust-
ness. The flexibility consideration implied the virtual
disk approach. Using the disk-driver interface as the
chosen abstraction gives its potential users the freedom
to use any kind of file system they want on top of it, be
it FFS, swap space, or even space for a database appli-
cation that writes to the raw partition.

It is important that the design be modular since break-



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association180

throughs in cryptanalysis are unpredictable and frequent.
Being tied to a single cipher, a single method for choos-
ing IVs or a single method for generating keys would
force users to upgrade critical operating system compo-
nents upon the discovery of weaknesses or vulnerabil-
ities. Modularity also allows for use to be tailored to
a specific threat model. Allowing multiple ciphers en-
ables the user to perform cost-benefit analysis based on
an evaluation of their risk. Allowing multiple key gen-
eration methods allows CGD to be used under different
threat models. For example, unattended booting might
be a requirement and in this case it would make sense to
retrieve the keys from a GSS–API key server. N–factor
authentication might be required and CGD provides for
this.

The performance consideration led to the decision
to place the cryptographic disk functionality below the
buffer cache; that is, create a virtual disk driver that di-
rectly accesses the raw disk beneath it. This allows all
kernel-level (or even user-level) software that makes as-
sumptions about disk layout to work (whether these as-
sumptions are justified is beyond the scope of this pa-
per).

The robustness consideration led to the decision to
place the most complex code in user land in the con-
figuration utility. The user land configuration utility per-
forms all key management, key retrieval, etc. This leaves
the kernel code the easier task of encrypting blocks
which makes the kernel code straightforward to audit.

The main disadvantage of the pseudo–disk approach
is that there is no per-user keying or any other per-user
cryptographic isolation. For better or worse, the security
model of Unix is left unchanged. This, of course, is not
a problem in the intended user-base for CGD, namely,
laptop users or owners of removable storage in national
nuclear research laboratories. In any case, if the oper-
ating system is not trusted to provide adequate protec-
tion, potential intruders can read keys or buffer blocks
off /dev/kmem anyway, so this is not as big a problem as
it first appears.

The CGD code base consists of two parts: a kernel
driver and user-level configuration software. We exam-
ine these two parts next.

2.1 The Kernel Driver
Once we decided to create a disk driver, we still had a
number of design decisions to make. There are several
places in the kernel where we could have implemented
such functionality. One quick solution could have been
to modify the vnd(4) driver. Vnd is a device driver that
turns a Unix file into a block device. This approach is
used in the OpenBSD. There are several reasons why
this turns out not to be a good idea. Firstly, in vnd re-
quests have to traverse the filesystem code twice. This

increases the number of places where deadlocks can oc-
cur. In fact, we have run into such problems when trying
to run a system entirely off vnd disks on top of msdosfs
files. Secondly, because we are laying out an FFS (or
some other) filesystem on top of a file which has already
been laid out in an FFS filesystem, the upper filesystem
will make block allocations based on erroneous assump-
tions of block locality; these destroy many of the advan-
tages of the FFS layout algorithms. Experience with vnd
actually indicates that this degradation is not that pro-
nounced, but that may be an artifact of the actual work-
load. Lastly, adding crypto to vnd as a way of provid-
ing an encrypted disk runs into ease-of-use problems.
To do so, a user would have to create a filesystem on
the disk, allocate a single maximal-sized file, configure
it with vnd and partition the resulting pseudo-disk. At-
taching and mounting at runtime also add their share of
complexity. Complexity for the user is unacceptable un-
less it delivers value; it is preferable to spend extra effort
once if it results in easier use. Moreover, a user will im-
mediately recognize that, for example, /dev/cgd0a is an
encrypted device, rather than have to remember whether
they configured the /dev/vnd0a with or without encryp-
tion. This last reason is why we did not release a null
encryption transform.

CGD is a pseudo disk, in the same vein as the concate-
nated disk driver (ccd(4)) or RAIDframe (raid(4)). Ccd
takes multiple partitions and presents them as a single
disk by either concatenating them or interleaving their
blocks (RAID 0). RAIDframe uses the same techniques
to provide RAID 0, 1, 4, and 5.

A disk device presents both a block interface and a
character interface. CGD does its interesting work in the
strategy() call in the block interface and the ioctl() call in
the character interface. The rest of the interface simply
presents a normal disk/pseudo-disk in the same way as
ccd(4), raid(4) or vnd(4). For further information about
the block and character devices please refer to “The De-
sign and Implementation of the 4.4BSD Operating Sys-
tem”[11]. For the purposes of this project, we imple-
mented a generic set of functions that could be shared
by all of the pseudo–disks to simplify the code.

The ioctl() function responds to all the normal disk
ioctl(2)s and also presents two more: CGDIOCSET and
CGDIOCCLR. The first ioctl will cause CGD to attach
to an underlying disk device or partition and configure
the required parameters (such as the key, the encryption
algorithm, the key length, the IV method, etc.). The sec-
ond ioctl will detach the CGD from the underlying disk
and free the parameters.

CGD’s strategy() is responsible for scheduling an I/O
request. If the CGD is not configured then this call will
result in an error. We are passed a buf structure which
contains all the relevant information about the request



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 181

we are about to perform. As with all strategy() routines,
we perform basic bounds checking and index into the
disklabel to calculate the real offset of the operation.

If we are reading then we allocate a new buf structure
and populate it, setting its buffer to be the buffer that we
have been passed.

If we are writing then we also allocate a new buf
structure and populate it, but this time we also allocate
memory for the transfer. We do this because the con-
tents of the buffer cache must be stored in plain text
and so if we encrypt in place then we would be forced
to decrypt when the operation completes. This would
double the CPU usage for writing. It is also not clear
that this would not cause problems for processes which
have mmap(2)ed the buffers on which we are working.
OpenBSD’s vnd(4) driver encrypts the data in place and
decrypts it when the write completes.

We then pass the newly created buf structure to the un-
derlying disk driver. When it completes its work, it will
call back into CGD which will check for errors, decrypt
the data in the read case and register its completion.

We do not modify the block size of the underlying
device because that would violate the atomicity of single
writes and the file system code relies on said atomicity
to ensure that data can be recovered after a crash. It
would also needlessly complicate the driver making it
more difficult to audit. We also do not provide integrity
checking since this would require the storage of hashes
and would break the atomicity assumptions.

We define a modular framework for adding crypto-
graphic algorithms. It is not enough to rely on an under-
lying framework such as the OpenBSD Crypto Frame-
work because CGD is making additional decisions be-
yond simply choosing a cipher and a mode. Even with a
simple CBC mode the IV needs to be chosen.

In Cipher Block Chaining (CBC) mode, we encrypt
each disk block using a block cipher; a different IV is
used for each block. We support three ciphers in the ini-
tial implementation: AES[6], 3DES[12, 15] and Blow-
fish[14]. We only support one IV generation method:
the block number encrypted under the same key as the
data; we do provide the ability in the code to define more
if the need arises.

Each block is encrypted separately from any other
block. To ward against structural analysis, we use a dif-
ferent IV for each block. In the initial implementation
we use as an IV the block number encrypted under the
same key as the one used for data. This provides the
guarantee that each block has a different IV since the
block cipher is a bijection. IVs for successive blocks
thus come from plaintexts that differ by very few bits;
this may lead to some rather obscure attacks, and we
plan to add additional IV generation methods in the next
release of CGD.

We decided against trying to use complicated schemes
of generating multiple keys for different parts of the
disk, as this would increase complexity (which rarely
makes for better security) without any identifiable bene-
fit. Moreover, we do not permute the layout of blocks on
the disk because it would adversely affect performance,
again without any identifiable security benefits.

2.2 The Userland Program
Configuration is performed from userland using the cgd-
config(8) utility. This utility performs all necessary func-
tions including managing the configuration files, gener-
ating or fetching keys and configuring the device.

We define two types of configuration file: the main
configuration file /etc/cgd/cgd.conf and per-CGD “pa-
rameters files.” The main configuration file lists all of
the CGD devices that should be automatically configured
and the mapping between the CGD and the real disk. The
parameters files define per-CGD parameters such as the
encryption algorithm, the key generation methods and
the IV generation method.

The userland configuration utility needs to derive a
key for the encryption. We support an extensible frame-
work for defining mechanisms to derive the key. The
parameters file contains a variable number of key gen-
eration stanzas. The derived key is the direct sum of
the evaluation of all of the stanzas. This provides for
n–factor authentication.

Currently we support four different key generation
methods, namely pkcs5 pbkdf2, gssapi keyserver, ran-
domkey, and storedkey.

The pkcs5 pbkdf2 method is an implementation of
PKCS#5 PBKDF2[2]. If used, it will prompt the user
for a passphrase which will then be used to derive the
key. PKCS#5 PBKDF2 was chosen because it is well
understood and can generate keys of different lengths
safely. The use of PKCS#5 PBKDF2 addresses perhaps
the most common weakness of otherwise well designed
crypto–systems, namely dictionary attacks against the
passphrase. Since the method uses chained HMACs and
includes an iteration count, it is possible to configure
enough iterations to make a dictionary attack arbitrar-
ily prohibitive at a fixed configuration–time cost. The
inclusion of a salt from the parameters file precludes an
off line attack.

Since it is unlikely that the entropy contained in the
pass phrases that users can remember will increase with
Moore’s Law, it is essential that the default iteration
count is chosen with care. The pkcs5 pbkdf2 algorithm
is run infrequently, so it is acceptable that it takes a rea-
sonably long time to derive a key from the pass phrase.
We decided that one second was the appropriate amount
of time in light of these considerations. When generat-
ing a parameters file, cgdconfig(8) will calibrate to the



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association182

current hardware and choose an iteration count that will
cause the pkcs5 pbkdf2 algorithm to take one second to
derive the key.

This should provide a reasonable level of protection
for the foreseeable future. If we assume that the user’s
pass phrase contains n bits of entropy against a dictio-
nary attack, then it will take 2n seconds to crack. If
Moore’s Law is that computer speed will double approx-
imately every 18 months, then in m years it will take
2n 2m/3 seconds to crack. For n = 40, we get that to-
day it should take 240 seconds = 38865 years. Although
the work can be spread over many machines, this is still
quite a formidable amount of time. When m = 10, how-
ever, it will take 240 15 seconds = 1.06 years which is
still a considerable amount of time, but within the capac-
ity of an attacker with sufficient resources.

By contrast, many of the other cryptographic disks use
a simple cryptographic hash (such as FreeBSD’s GEOM
driver) or no transform at all (such as OpenBSD’s vnd(4)
driver). This provides no protection against dictionary
attacks.

The gssapi keyserver method fetches the key from a
keyserver using GSS–API to authenticate and protect the
key. This method allows for unattended reboots.

The randomkey method reads the appropriate number
of bits from /dev/random and uses that as a key. This
method is intended to be used in situations where persis-
tence across reboots is not necessary. Examples would
be a swap partition or perhaps a cache that contains sen-
sitive data.

The storedkey method has the key in its stanza in the
parameters file. It is used for two purposes. First if the
parameters file is stored on separate media, such as a
USB Mass Storage device, it can be part of an n-factor
authentication scheme. Second, we use it to generate
new parameters files that have different passphrases but
still derive the same key. We shall discuss the latter point
later in this section.

In the cases where the user must enter a passphrase,
we need a mechanism to detect if the passphrase is en-
tered incorrectly. If verification fails, then cgdconfig(8)
will print a warning and prompt for the passphrase again.
We define methods that use the information that is al-
ready present on the disk in its normal usage, such as a
disklabel or a filesystem. By using information which is
already present we provide no information to an attacker
that they could not already intuit from other unencrypted
information on the system. We considered storing a hash
of the generated key, but this would allow the attacker to
perform a dictionary attack against the passphrase even
if only in possession of the parameters file. The veri-
fication methods that we have defined require that the
attacker have both the parameters file and the encrypted
disk before a dictionary attack against the passphrase can

commence. The main importance of this is the n–factor
authentication where the parameters file is stored on a
removable storage device.

We define a framework for the verification methods
and currently support three mechanisms: none, disklabel
and ffs. The first performs no checking. The disklabel
and ffs methods scan for a disklabel or FFS filesystem
after configuration, respectively.

The userland utility also provides the ability to gener-
ate additional parameters files which generate the same
key. To do this, it fully evaluates the original parameters
file including asking for passphrases and retrieving the
keys from a keyserver producing key K1. It then gen-
erates a new parameters file (which may use different
key generation methods) and evaluates it producing key
K2. It then appends a key generation stanza of method
storedkey where the stored key is K1 ⊕ K2. The new
parameters file will generate the same key:

K2 ⊕ (K1 ⊕ K2) = K1

The ability to generate new parameters files allows
the user to change their passphrase without rekeying the
disk. It also allows multiple administrators to access the
disk with different passphrases. An administrator could
also configure one parameters file with pkcs5 pbkdf2
and another with gssapi keyserver to allow for either a
fallback when the keyserver is down, or to allow quicker
booting of a laptop in a trusted environment.

The standard NetBSD start up scripts will recognize
the existence of the main configuration file and automat-
ically run cgdconfig(8) at various points to configure the
CGDs. It is necessary to split CGD configuration up in
this manner because some of the key generation methods
may require network access, such as gssapi keyserver,
whereas some of the disks may need to be configured
before the network is brought up. We solve this with the
aforementioned tags in the main configuration file.

Tightly integrating CGD support into the default
NetBSD start up scripts provides system administrators
with the ability to use CGD with a minimum of effort.

3 Evaluation
In our current implementation, the kernel code is com-
prised of the files cgd.c, cgd crypto.c, cgd crypto.h,
cgdvar.h, dksubr.c and dkvar.h located in the directory
src/sys/dev/. The files dksubr.c and dkvar.c were writ-
ten during the course of this project, but are not strictly a
part of CGD. They are common functionality which CGD

shares with ccd and raid. Excluding these files, CGD’s
kernel code is 1348 lines including comments. Of this,
the code which interfaces with the ciphers is 91 lines for
Blowfish, 103 lines for 3DES and 102 lines for AES.
This provides a good metric for how difficult it would be
to interface to a new cipher.



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 183

The userland program is comprised of all the files
in the directory src/sbin/cgdconfig/. Cgdconfig is 2763
lines of code including comments.

In the following, we analyse the performance of the
cryptographic disk. Since the performance varies widely
depending on the hardware in question, we analyse three
systems: a DEC Personal Workstation 500a (alpha); a
Pentium 4-based PC; and an IBM ThinkPad 600E (Pen-
tium II).

Since CGD is designed as a pseudo-disk device, we
concentrate our analysis on the raw disk to avoid the sec-
ondary effects of the file system code. Our initial specu-
lation was that CGD would increase the latency of a disk
transaction by a factor depending on the size of the trans-
fer while using much CPU. The results on the Alpha bear
this theory out, while the results on the i386 raise a few
questions. We measured disk throughput by reading and
writing 100 MBytes from the raw disk devices using dif-
ferent block sizes. The test is a single thread with each
operation waiting for the previous operation to complete.

The ciphers had the same relative performance on the
different platforms we tested. The only cipher which
consistently had a significant detrimental impact on per-
formance was 3DES. The other ciphers performed sub-
stantially better.

3.1 DEC Personal Workstation 500a

0

1

2

3

4

5

1 2 4 8 16 32 64

M
B

yt
es

 p
er

 s
ec

on
d

block size in KBytes

raw
aes-cbc/256
aes-cbc/192
aes-cbc/128

blowfish
3des

Figure 1: Throughput vs. block sizes of writes to the raw
disk devices on PWS500a

These measurements were performed on a DEC Per-
sonal Workstation 500a (PWS 500a) running NetBSD

0

1

2

3

4

5

1 2 4 8 16 32 64

M
B

yt
es

 p
er

 s
ec

on
d

block size in KBytes

raw
aes-cbc/256
aes-cbc/192
aes-cbc/128

blowfish
3des

Figure 2: Throughput vs. block sizes of reads from the
raw disk devices on PWS500a

1.6I. The PWS 500a has a 500 MHz 21164a Alpha pro-
cessor. The disk on which the tests were run is a 2GByte
Ultra-Wide SCSI disk, a Seagate model ST32155W.

We note in Figures 1 and 2 that at small block sizes
performance is degraded quite substantially, whereas as
the block size increases performance returns to a quite
reasonable level. In the write case AES and Blowfish
both quickly began to reach full disk throughput as the
block size was increased. The read case proved to be
almost as quick, although at the larger key sizes AES
could not quite keep up. 3DES performance was poor,
as we expected.

NetBSD on the Alpha does not have assembly opti-
mized versions of any of the ciphers used, unlike the
i386 architecture.

3.2 Pentium 4-based PC

These measurements were performed on a 1.7 GHz Pen-
tium 4 system running NetBSD 1.6Q. The pseudo-disks
were constructed on a 19 GByte Ultra100 IDE disk, a
WDC WD200BB-00CXA0.

We note from Figures 3 and 4 that results are substan-
tially more complex than they were on the Alpha.

For writing, CGD keeps up at the low block sizes and
performance falls off and then starts catching back up.
With a 64 KByte block size, Blowfish attains 85% of the
raw disk throughput and 128-bit AES attains 73%.

The read performance of the raw disk experiences a
large jump between the block sizes of 16KB and 32KB,



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association184

0

5

10

15

20

25

1 2 4 8 16 32 64

M
B

yt
es

 p
er

 s
ec

on
d

block size in KBytes

raw
aes-cbc/256
aes-cbc/192
aes-cbc/128

blowfish
3des

Figure 3: Throughput vs. block sizes of writes to the raw
disk devices on P4 class machine

but CGD still maintains the level of performance that one
would expect. Blowfish almost keeps up with the raw
disk for all of the block sizes and at 64 KByte attains
88% of the raw disk throughput. 128-bit AES attains
64% of the raw disk throughput.

3.3 IBM ThinkPad 600E
These measurements were performed on a ThinkPad
600E running NetBSD 1.6Q. The ThinkPad has a Mo-
bile Pentium II processor running at 400 MHz. The
pseudo-disks were constructed on a 10 GByte Ultra33
IDE disk, a TravelStar.

The results are much simpler in this case as we note
from Figures 5 and 6.

The read and write cases are quite similar. For Blow-
fish at 64 KByte block sizes, writing achieves 84% of the
raw disk throughput and reading achieves 85%. 128-bit
AES at 64 KByte block sizes achieves 64% and 58% for
writing and reading, respectively.

4 Related Work
The Cryptographic File System (CFS)[4] is perhaps the
most widely used cryptographic file system. The ab-
straction it presents is encrypted file contents as well as
encrypted file names. It runs as a user-level NFS dae-
mon listening to NFS requests on the loopback interface
(so that only requests from the same machine will be
honored). This user-level daemon, cfsd, provides virtual
directories under /crypt. An encrypted directory hierar-

0

5

10

15

20

25

30

1 2 4 8 16 32 64

M
B

yt
es

 p
er

 s
ec

on
d

block size in KBytes

raw
aes-cbc/256
aes-cbc/192
aes-cbc/128

blowfish
3des

Figure 4: Throughput vs. block sizes of reads from the
raw disk devices on P4 class machine

chy to its corresponding cleartext hierarchy, visible un-
der /crypt/username using the cattach utility. Keying is
done on a per-user basis; the encrypted hierarchy is ini-
tialized with a key, given as a passphrase, which has to
be passed to cattach when the latter is invoked to attach
the encrypted directory. While, of course, only root can
run the initial mount command that provides the /crypt
hierarchy, cfsd can be run as an unprivileged server, in
which case only that user’s files are available. If it is run
as root, it enforces unix-domain credentials (userid and
groupid), so that only processes running under the same
userid can access the CFS directories. CFS is extremely
useful when a user’s home directory lives on an NFS
server, and the user wants to take advantage of system-
wide file availability and backup services, but still wants
more privacy than the NFS primitives allow.

The Microsoft Windows 2000 and Windows XP
NTFS file system supports a similar notion of encrypted
files and directories. Any subdirectory (or just a leaf file)
can be declared encrypted, but only the file contents (and
not the file- or directory name) are encrypted. However,
the feature is better integrated in the filesystem layout,
in that the encrypted files do not have to reside under a
special top-level directory.

Vnd under OpenBSD supports encryption; each block
of the underlying file is just encrypted using a symmet-
ric cipher, as we have already explained in Section 2.
There are numerous other examples of loopback disk
drivers, such as ccd(4) and vinum[9], any of which could



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 185

0

2

4

6

8

10

1 2 4 8 16 32 64

M
B

yt
es

 p
er

 s
ec

on
d

block size in KBytes

raw
aes-cbc/256
aes-cbc/192
aes-cbc/128

blowfish
3des

Figure 5: Throughput vs. block sizes of writes to the raw
disk devices on ThinkPad 600E

potentially be modified to support encryption, in addi-
tion to their primary functionality. Linux loopback de-
vices support encryption either to a file or to a disk par-
tition. BestCrypt[8] is a commercially available loop-
back encryption device. FreeBSD’s GEOM layer sup-
ports encrypting a partition. None of these use PKCS#5
PBKDF2 or any other iterated salted key generation
method and so do not offer adequate protection from dic-
tionary attacks against the pass phrase.

Another driver that closely resembles CGD is the en-
crypting swap device[13] on OpenBSD. In order to pro-
tect against keys or other sensitive information linger-
ing in the swap space long after their corresponding
processes have terminated, the swap device itself is en-
crypted. Their keys are chosen randomly, and change
frequently, thereby invalidating old data.

Half-way between the loopback drivers and the NFS
approaches lie encrypting file systems implemented as
a vnode layer. Stackable vnodes were introduced by
Rosenthal [7], and were used to implement among
other things two encrypting file systems Cryptfs [17, 18]
and NCryptfs [16]. This approach offers substantially
higher performance than the NFS approaches, but is less
portable.

5 Conclusions and Future Work

Many computers fall into the category of “trusted admin-
istrator, low physical security” and for these computers
an encrypted disk provides adequate protection against

0

2

4

6

8

10

1 2 4 8 16 32 64

M
B

yt
es

 p
er

 s
ec

on
d

block size in KBytes

raw
aes-cbc/256
aes-cbc/192
aes-cbc/128

blowfish
3des

Figure 6: Throughput vs. block sizes of reads from the
raw disk devices on ThinkPad 600E

typical threats. We have designed and implemented an
encrypted disk, taking care to avoid some of the most
common errors that have been made in other systems by
ensuring that it is easy to configure and the cryptography
is designed according to best practices.

We have demonstrated that the performance of our
cryptographic disk is acceptable, although the exact per-
formance is quite dependent on the hardware configura-
tion. Blowfish is quite fast, suffering only about a 15%
performance hit on the platforms we tested and AES of-
fers performance that is still acceptable.

CGD is in use today, both in the laptop of one of the
authors and in the laptops of many NetBSD users. One
user even reported that his use of CGD has already kept
the contents of his laptop from the prying eyes of one
of his client’s employees who decided to use a Linux
boot floppy to examine his laptop while he was taking
his lunch break.

Because CGD defines extensible frameworks for many
aspects of its configuration, there is much room for fu-
ture growth. Currently CGD supports three ciphers and
one IV generation method. We may add additional ci-
phers if there is demand. We plan on adding additional
IV generation methods.

There is much room for future work on CGD. Addi-
tional key generation methods could be defined. CGD

could be modified to use the crypto(9) API which was
not available in NetBSD when CGD was written.

The software is freely available as part of the NetBSD



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association186

operating system. The NetBSD source tree can be ac-
cessed online via http://www .NetBSD .org/.

Acknowledgments
We wish to thank the anonymous USENIX reviewers,
our shepherd Robert Watson and Erez Zadok for review-
ing the paper and providing helpful comments.

We wish to thank Lee Nussbaum for offering valu-
able comments during the development of CGD. We also
thank Love Hörnquest Åstrand, Thor L. Simon and Ja-
son R. Thorpe for reviewing the code. We would also
like to thank Chris G. Demetriou for his tolerance.

References
[1] Amy Paulson. Senate hearing examines

loss of nuclear secrets at Los Alamos lab.
http://www .cnn .com/2000 /ALLPOLITICS /
stories/06 /14 /losalamos.hearing/, June 2000.

[2] B. Kaliski. PKCS #5: Password-Based Cryptog-
raphy Specification Version 2.0. RFC 2898, http:
//www .ietf .org/rfc/rfc2898 .txt , September 2000.

[3] Betsy Schiffman. Stolen Qualcomm Laptop Con-
tains Sensitive Data. http://www .forbes .com/
2000 /09 /19 /mu5 .html , September 2000.

[4] M. Blaze. A Cryptographic File System for Unix.
In Proc. of the 1st ACM Conference on Computer
and Communications Security, November 1993.

[5] Giuseppe Cattaneo, Luigi Catuogno, Aniello Del
Sorbo, and Pino Persiano. The Design and Im-
plementation of a Transparent Cryptographic File
System for UNIX. In Proceedings of the Annual
USENIX Technical Conference, June 2001.

[6] Joaen Daemen and Vincent Rijmen. AES Pro-
posal: Rijndael. http://www .esat .kuleuven.ac.be/
∼rijmen/rijndael/, June 1998.

[7] David S.H. Rosenthal. Evolving the Vnode Inter-
face. In Proceedings of the Annual USENIX Tech-
nical Conference, June 1999.

[8] Jetico, Inc. BestCrypt software home page. http:
//www .jetico.com/, 2002.

[9] Greg Lehey. The Vinum Volume Manager. In Pro-
ceedings of the Annual USENIX Technical Confer-
ence, FREENIX Track, June 1999.

[10] John Leyden. For sale: memory stick plus can-
cer patient records. http://www .theregister .co.uk /
content /55 /29752 .html , March 2003.

[11] Marshall Kirk McKusick, Keith Bostic, Michael J.
Karels, John S. Quaterman. The Design and Imple-
mentation of the 4.4BSD Operating System, pages
196–204. Addison-Wesley Publishing Company,
1996.

[12] National Bureau of Standards. Data Encryption
Standard, January 1977. FIPS-46.

[13] Niels Provos. Encrypting Virtual Memory. In Pro-
ceedings of the 10th Usenix Security Symposium,
August 2000.

[14] Bruce Schneier. Description of a new variable–
length key, 64-bit block cipher (blowfish). In
Fast Software Encryption, Cambridge Security
Workshop Proceedings. Springer-Verlag, Decem-
ber 1993.

[15] Bruce Schnier. Applied Cryptography, pages 265–
301. John Wiley and Sons, second edition, October
1995.

[16] C. P. Wright, M. Martino, and E. Zadok. NCryptfs:
A Secure and Convenient Cryptographic File Sys-
tem. In Proceedings of the Annual USENIX Tech-
nical Conference, June 2003.

[17] Erez Zadok, Ion Badulescu, and Alex Shender.
Cryptfs: A stackable vnode level encryption file
system. Technical Report CUCS-021-98, Com-
puter Science Department, Columbia University,
June 1998.

[18] Erez Zadok, Ion Badulescu, and Alex Shender. Ex-
tending File Systems Using Stackable Templates.
In Proceedings of the Annual USENIX Technical
Conference, June 1999.


