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Abstract

This paper describes Active Internet Traffic Filtering
(AITF), a mechanism for blocking highly distributed
denial-of-service (DDoS) attacks. These attacks are an
acute contemporary problem, with few practical solu-
tions available today; we describe in this paper the rea-
sons why no effective DDoS filtering mechanism has
been deployed yet. We show that the current Internet’s
routers have sufficient filtering resources to thwart such
attacks, with the condition that attack traffic be blocked
close to its sources; AITF leverages this observation. Our
results demonstrate that AITF can block a million-flow
attack within seconds, while it requires only tens of thou-
sands of wire-speed filters per participating router — an
amount easily accommodated by today’s routers. AITF
can be deployed incrementally and yields benefits even
to the very first adopters.

1 Introduction
We have recently witnessed a dramatic increase in the
frequency and ferocity of distributed denial-of-service
(DDoS) attacks. In December 2003, an attack kept
SCO’s web site practically unreachable for more than
a day [6]; in June 2004, another attack flooded Aka-
mai’s name servers, disrupting access to its clients for
2 hours, including the Google and Yahoo search en-
gines [7]; a month later, an attack flooded DoubleClick’s
name servers, disabling ad distribution to its 900 clients
for 3 hours [8]. Considering that network downtime costs
hundreds of thousands of dollars per hour [19], such inci-
dents can translate into millions of dollars of lost revenue
for the victim. Yet, the DDoS problem remains unsolved.

We recognize three (not all of them orthogonal) prob-
lems that render DDoS traffic hard to filter:

Source address spoofing: An attack source often uses
multiple fake source IP addresses to send its traffic. As
a result, the victim can neither identify the attack source
nor specify a filtering rule (e.g., “block all traffic with

source IP address S”) that selectively blocks its traffic.

Large number of attack sources: Each hardware router
has only a limited number of filters that can block traf-
fic without degrading the router’s performance (i.e., fil-
ters operating at wire speed). The limitation comes from
cost and space. Wire-speed filters are typically stored in
expensive TCAM (Ternary Content Addressable Mem-
ory), which they share with the router’s forwarding table.
Some of the largest TCAM chips available today accom-
modate 256K entries [4]. A sophisticated router linecard
fits at most 1 TCAM chip [1], i.e., tens of thousands of
filters per network interface. On the other hand, a large-
scale attack can involve millions of attack sources [22].
So, even if source address spoofing were completely
eliminated, i.e., even if the victim could identify each at-
tack source and specify a filtering rule for it, the victim’s
firewall would not have enough filters to accommodate
all the rules.

The straightforward solution to such a resource prob-
lem is aggregation: Don’t install a separate filter for each
attack source; instead, identify the IP prefixes that cover
most attack sources and block all traffic from these pre-
fixes. Unfortunately, filter aggregation does not work
in most DDoS scenarios: Attack sources are typically
worm-infected populations, highly distributed across the
Internet. As a result, blocking the prefixes that corre-
spond to the attack sources results in blocking most In-
ternet prefixes, thereby causing severe collateral damage.

Pushing filtering into the Internet core does not scale:
If the victim’s firewall cannot block attack traffic by it-
self, the straightforward solution is to push filtering of
attack traffic back into the Internet core: Identify the up-
stream peering networks that forward attack traffic and
send them appropriate filtering requests. Unfortunately,
this approach does not scale, because it introduces end-
to-end filtering state into core routers. Consider a core
router receiving filtering requests from 10 victims; each
victim is under attack by a million sources. The core
router can either block traffic from each attack source
to each victim, or aggregate filtering rules and rate-limit
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all traffic going to the victims. The former requires 10
million filters; the latter requires only 10 filters, but sac-
rifices most good traffic going to the victims.

Yet, there are enough filtering resources in the Inter-
net to block such large-scale attacks. An attack coming
from thousands of different networks involves thousands
of routers; assuming each router contributes a few thou-
sand filters, there are millions of filters available to block
attack traffic. And the closer we get to the attack sources,
the larger the amount of filtering resources available per
attack source — it is the victim’s firewall and the Inter-
net core that are the “filtering bottleneck”. Unfortunately,
today, the victim has no access to these resources, since
there is no way for a DDoS victim to identify routers lo-
cated close to the attack sources and make them block
attack traffic.

In this paper, we present a DDoS filtering mecha-
nism that overcomes these problems. Our source address
spoofing solution is a hardware-friendly variant of the
IP route record (RR) technique [20]. Although differ-
ent from traditional packet marking techniques [21, 14]
(which do not provide an explicit recorded route in each
packet), our RR approach is not a radical departure from
them, either. Our main contribution is Active Inter-
net Traffic Filtering (AITF), a protocol that leverages
recorded route information to block attack traffic.

An AITF-enabled receiver uses the routes recorded on
incoming packets to identify the last point of trust on
each attack path and causes attack traffic to be blocked
at that point, i.e., as close as possible to its sources.
We provide a way to do this securely — AITF prevents
abuse by malicious nodes seeking to disrupt other nodes’
communications. We show that our approach can selec-
tively block a million attack sources, yet requires only
tens of thousands of TCAM memory entries and a few
megabytes of DRAM memory from each participating
router; these numbers correspond to the specifications of
real products [4, 1]. We also provide an incremental de-
ployment scenario, in which even early adopters receive
a concrete benefit; this benefit is compounded by further
deployment.

The rest of the paper is organized as follows: Section
2 describes route record and how a receiver can use it
to identify distinct traffic flows. Section 3 describes the
AITF protocol in detail, naively assuming that no source
address spoofing occurs. We remove this assumption
in Section 4, where we describe how AITF deals with
spoofing attacks. We estimate AITF performance in Sec-
tion 5 and verify our estimates through simulation in Sec-
tion 6. Section 7 analyzes deployment issues, Section 8
discusses additional attacks and potential defenses, and
Section 9 presents related work. Section 10 concludes
the paper.

2 Limiting spoofing
2.1 Route Record
A router that participates in a route record (RR) scheme
writes its IP address on each packet it forwards. In our
approach, only border routers participate in RR. As a re-
sult, each packet carries the identities of a sub-list of the
border routers that forwarded it. For example, in Figure
1, border routers Agw , X , Y , and Vgw are RR-enabled;
each packet sent by host A to host V carries recorded
route {Agw X Y Vgw} upon reaching its destination.

Figure 1: Packets sent by host A to host V carry recorded
route {Agw X Y Vgw}.

We implement RR functionality as a “shim” protocol
between the IP and transport layers, i.e, the RR header is
introduced as the beginning of the IP payload. We chose
not to use the traditional IP RR option, because of its
performance overhead — traditional IP RR packets are
typically handled by routers off the fast path. The details
of how each participating router adds its address to the
RR header are described in the Appendix, Section A.1.

When a packet crosses an RR-enabled, “non-
malicious” Internet area adjacent to its destination do-
main, its recorded route includes an authentic (non-
spoofed) suffix. Specifically, the last n components of
the recorded route are authentic, when the last n border
routers crossed by the packet are RR-enabled, and there
is no malicious node on the path that interconnects them.
As we explain next, this enables a receiver to identify dis-
tinct incoming traffic flows in the face of source address
spoofing.

2.2 Identifying Distinct Flows
We define the recorded path of a packet as the sequence
of IP addresses that correspond to: the packet’s source,
the list of border routers specified in the RR header, and
the packet’s destination. We define a flow as the set
of all packets that share a common recorded path suf-
fix. For example, in Figure 1, all packets with path
{A Agw X Y Vgw V } constitute a distinct flow; all pack-
ets with path {∗ Agw X Y Vgw V } also constitute a dis-
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tinct (aggregate) flow. We use F{P} to refer to flow F

with recorded path P .
A DDoS victim feeds recorded paths into a local pol-

icy module, which classifies incoming traffic in distinct
flows, decides which ones are undesired and forms filter-
ing requests against them. The operation of the policy
module depends on the specific service run by the victim
and is outside the scope of this paper. We call it a “pol-
icy module”, because it determines a “defense policy”,
i.e, which flows must be blocked. AITF (described in the
next section) is the mechanism that enforces the chosen
policy.

It is up to the policy module to classify incoming traf-
fic in multiple “flow levels”, in order to identify unde-
sired flows in the face of source address and path spoof-
ing. For example, consider that in Figure 1 attack source
A is sending high-rate traffic to victim V . If network
ANET prevents source address spoofing, V can easily
identify F1{A Agw X Y Vgw V } as a high-rate flow and,
thus, undesired. If A is able to spoof multiple source IP
addresses, V can only identify F2{∗ Agw X Y Vgw V }
as the undesired flow.

Once the policy module identifies an undesired flow, it
sends a filtering request to the local AITF process. AITF
does not assume that the recorded path of an undesired
flow coincides with its real path. I.e., if the policy module
identifies F{∗ Agw X Y Vgw V } as an undesired flow,
this only means that the victim does not want to receive
any more packets with this recorded path; it does not nec-
essarily mean that these packets are indeed forwarded by
Agw , X , and Y .

3 Basic AITF Protocol
We start with an overview of the protocol (Section 3.1)
and terminology (Section 3.2); we describe our algo-
rithm incrementally, through Sections 3.3, 3.4, 3.5, and
3.6; we discuss appropriate values for its parameters in
Section 3.7. To simplify description, we naively assume
that no source address/path spoofing occurs — we re-
move this assumption in the next section.

3.1 Overview
Upon identifying an undesired flow, the victim sends a
filtering request to its gateway (Vgw in Figure 1). The
victim’s gateway temporarily blocks the undesired flow
and identifies the border router located closest to the at-
tack source(s) — call it the attack gateway (Agw in Fig-
ure 1). Then, the victim’s gateway initiates a “counter-
connection” setup with the attack gateway, i.e., an agree-
ment not to transmit certain packets — the opposite of
a TCP connection setup, which is an agreement to ex-
change packets. As soon as the counter-connection setup

is completed, the victim’s gateway can remove its tem-
porary filter. If the attack gateway does not cooperate,
the victim’s gateway can escalate the filtering request to
the next border router closest to the attack gateway (X
in Figure 1). Escalation can continue recursively until
a router along the attack path responds and a counter-
connection setup is completed. If no router responds,
attack traffic is blocked locally by the victim’s gateway.
However, as we will see, AITF both assists and motivates
routers close to the attack source(s) to help block attack
traffic.

3.2 Terminology
The recorded path P of an undesired flow has form
{A Agw ... Vgw V }, where

• A is the “attack source”, i.e., the node thought to be
generating the undesired traffic; if A = ∗, all traffic
through Agw is undesired.

• Agw is the “attack gateway”, i.e., the border router
thought to be closest to A.

• Vgw is the “victim’s gateway”, i.e., the border router
closest to the victim.

• V is the victim.

We assume that the only node affected by the attack
is V ; e.g., if this is a flooding attack, the only part of
the network that is congested is the tail-circuit from Vgw

to V . If Vgw were also affected, it itself would be the
“victim”, and its closest upstream border router would
be the “victim’s gateway”.

3.3 Blocking Close to the Attack Source
As shown in Figure 2, AITF involves 4 entities:

1. The victim V sends a filtering request to Vgw , spec-
ifying an undesired flow F .

2. The victim’s gateway Vgw :

(a) Installs a temporary filter to block F for Ttmp

seconds.

(b) Initiates a 3-way handshake with Agw .

(c) Removes its temporary filter, upon completion
of the handshake.

3. The attack gateway Agw :

(a) Responds to the 3-way handshake.

(b) Installs a temporary filter to block F for Ttmp

seconds, upon completion of the handshake.

(c) Sends a filtering request to the attack source
A, to stop F for Tlong � Ttmp minutes.

 



2005 USENIX Annual Technical Conference USENIX Association138

(d) Removes its temporary filter, if A complies
within Ttmp seconds; otherwise, it discon-
nects A.

4. The attack source A stops F for Tlong minutes or
risks disconnection.

All filtering requests are rate limited. I.e., the victim’s
gateway accepts a limited rate of requests from each al-
leged victim. Similarly, the attack gateway (i) accepts a
limited rate of requests (handshake initializations) from
each alleged victim gateway and (ii) sends a limited rate
of requests to each alleged attack source.

The reason for the temporary filter on the victim’s
gateway is to immediately protect the victim until the at-
tack gateway takes responsibility. The reason for directly
contacting the attack gateway is to avoid creating a filter-
ing bottleneck in the Internet core. Finally, the reason for
the 3-way handshake is to enable the attack gateway to
verify that the requester of the filter is indeed on the path
to the alleged victim; the handshake is further explained
next.

3.4 Securing Edge-to-edge Communication
The 3-way handshake is depicted in Figure 2: Vgw sends
to Agw a request to block F ; Agw sends to V a message
that includes F and a nonce; Vgw intercepts the message
and sends it back to Agw .

Figure 2: AITF entities and message exchange.
Vgw proves its location on the path to V by intercept-

ing the nonce sent to V . This prevents malicious node
M , located off the path from Agw to Vgw , from causing
a filter to be installed at Agw and block traffic to V . By
picking a sufficiently large and properly random value
for the nonce, it can be made arbitrarily difficult for M

to guess it (see Section 5.4).
To avoid buffering state on incomplete 3-way hand-

shakes, Agw computes the nonce as follows:

nonce1 = hashkey(F )

where key is a local key and hash is a keyed hash func-
tion. To verify the authenticity of a completion message,

Agw just hashes the flow included in the message and
compares the result to the nonce included in the message
(similar to the TCP SYN-cookie technique [13]).

3.5 Identifying Liars
With what we have described so far, there are two entities
that can lie: (i) An attack source can pause an undesired
flow (to avoid disconnection) and resume as soon as the
attack gateway has removed its temporary filter. (ii) An
attack gateway can pause an undesired flow and resume
as soon as the victim’s gateway has removed its tempo-
rary filter. To catch such liars, we introduce the shadow
filtering table.

Every time a gateway removes a temporary filter from
its TCAM, it creates a copy in DRAM that expires after
Tlong . This “shadow filter” helps check whether the cor-
responding undesired flow is released prematurely (be-
fore Tlong ) by its source. For example, suppose attack
gateway Agw has already told attack source A to block
F ; now suppose Agw receives a new filtering request
against F and installs a new temporary filter; if the new
filter catches F traffic, Agw checks its shadow filtering
table, finds out that a shadow filter for F already exists
(i.e., A has already been told to stop once) and discon-
nects A.

The victim’s gateway uses the same technique to
check whether the attack gateway keeps the undesired
flow blocked for Tlong minutes. The only difference is
that the attack gateway has to be caught violating the fil-
tering agreement twice to be classified as “lying” — the
first time could be due to a lying attack source, so the
attack gateway is given the benefit of the doubt once.

3.6 Dealing with Non-Cooperative Gate-
ways

An attack gateway can deal with a non-cooperative at-
tack source by disconnecting it. This is possible because
the attack gateway is the border router providing Inter-
net connectivity to the attack source. The victim’s gate-
way can obviously not deal with a non-cooperative attack
gateway the same way, since they belong to separate (not
even peering) administrative domains. To address this,
we introduce escalation.

An attack gateway is classified as “non-cooperative”,
if it does not respond to the handshake or responds,
but is caught violating the filtering agreement twice. In
that case, the victim’s gateway can “escalate” the filter-
ing request to the border router that follows the non-
cooperative attack gateway on the flow’s path. The new
attack gateway is requested to block all traffic from the
last non-cooperative attack gateway to the victim. For
example, in Figure 1, Vgw first contacts Agw asking it to
block all traffic from A to V . If Agw does not cooperate,
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Vgw can contact X asking it to block all traffic from Agw

to V . Simply said, an attack gateway either cooperates
and blocks traffic from its misbehaving client(s) to the
victim, or risks losing its connectivity to the victim over-
all. This is a strong incentive to cooperate, especially
when the victim is a popular public-access site like eBay
or Amazon.

There are cases in which escalation is good, and cases
in which it is bad. E.g., if eBay is losing most of its good
traffic to a severe flooding attack, it makes sense to block
access from non-cooperative attack gateways in order to
preserve connectivity to the rest of the world. On the
other hand, if eBay wants to get rid of a couple of an-
noying AOL clients, it does not make sense to block the
entire AOL, even if its gateway does not cooperate. De-
ciding whether escalation is a good or a bad idea is the
responsibility of the policy module. The policy module
communicates its decision by declaring (or not) an unde-
sired flow “escalatable”.

The victim’s gateway escalates a filtering request if
and only if (i) the corresponding flow is escalatable and
(ii) local filter utilization has exceeded a pre-configured
threshold. Otherwise, the undesired flow is blocked lo-
cally for Tlong minutes.

A smart attack source can introduce multiple fake
components in the beginning of the RR header and make
the victim’s gateway escalate multiple times (as many
as the fake components), before it actually contacts an
authentic border router. To avoid such abuse, a DDoS
victim can simply ignore the first components of “suspi-
ciously” long paths when classifying flows. For exam-
ple, 95% of Internet domains are no more than 6 hops
apart [17]. So, a DDoS victim can consider only the
last 6 components of the RR header when classifying
flows. This limits the number of unsuccessful escalation
attempts to 6 − n, where n is the number of RR/AITF-
enabled, cooperative border routers on the attack path.
However, this also sacrifices the traffic of good sources
collocated with bad sources, in networks that are more
than 6 domains away from the victim. The policy mod-
ule must decide whether keeping this traffic is worth the
unsuccessful escalation attempts.

3.7 Filter Timeout Values
The goal of a temporary filter on the victim’s gateway
is to block an undesired flow until the corresponding
handshake is complete. Considering that Internet round-
trip times range from 50 to 200 msec, a “safe” value is
Ttmp = 1 sec.

The choice of the long-term filter timeout Tlong in-
volves the following trade-off: An attack source A is
typically an “innocent” end-host compromised through a
worm. A large Tlong of, say, 30 minutes guarantees that

Figure 3: Malicious node M pretends to be at Stanford and
sends undesired traffic to eBay; its packets carry (spoofed)
recorded path {∗ Agw Vgw eBay}.

the victim V will not receive any undesired traffic from
the corresponding attack source A for at least 30 minutes;
on the other hand, it also guarantees that V will not re-
ceive any traffic at all from A, even if A is appropriately
patched before Tlong expires. Section 5 explains how ex-
actly the value for Tlong affects AITF performance.

4 Adding Resistance to Spoofing
As presented thus far, AITF is effective only if deployed
in a significant portion of the Internet, adjacent to the vic-
tim’s network. Otherwise, a malicious node can use path
spoofing and abuse AITF to disrupt other nodes’ com-
munications. We illustrate with an example.

Figure 3 illustrates an early deployment stage, where
only eBay and Stanford have deployed RR and AITF.
Traffic sent by Stanford hosts to eBay has path
{∗ Agw Vgw eBay}. Malicious node M spoofs this
path and sends to eBay high-rate traffic that appears to
be coming from Stanford. Vgw requests from Agw to
stop; although Agw agrees, Vgw continues to see high-
rate traffic from Stanford; it falsely concludes that Agw

is non-cooperative and blocks all traffic from Stanford to
eBay.

To prevent this abuse, we augment the recorded path
with randomized components. Now each RR-enabled
border router that forwards a packet writes on the packet
(i) its IP address and (ii) a random value that depends
on the packet’s destination. By picking a sufficiently
large and properly random value, it can be made arbi-
trarily hard for malicious off-the-path nodes to guess it
(see Section 5.4). For example, in Figure 3, traffic sent
by Stanford to eBay, has recorded path {∗ Agw :R1 Vgw :
R2 eBay}, where R1 and R2 are random values inserted
by Agw and Vgw respectively. To avoid keeping per des-
tination state, each router computes the random value to
insert in each packet as follows:

R = hashkey(D)

where key is a local key, hash is a keyed hash function
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and D is the packet’s destination.
When Agw receives a request to block undesired flow

F{P}, it checks whether it indeed forwarded F , i.e.,
whether P includes the correct random value. If yes,
Agw commits to filter F by responding to the handshake
as described in Section 3.4. Otherwise, Agw responds
with the “authentic” path P ′, i.e., the path that includes
the correct random value. So, if the victim’s gateway
sends a filtering request with a spoofed path, the hand-
shake consists of just two messages, depicted in Figure 4.

Figure 4: Vgw sends a filtering request against spoofed flow
F{P} that appears to be coming from Agw ; Agw responds with
the authentic path P ′, which includes the correct random value
inserted by Agw in all packets addressed to V . We added one
more nonce, to enable Vgw to verify that the response with the
authentic path is indeed coming from Agw .

The victim’s gateway uses the authentic path P ′ to rec-
ognize spoofed traffic that claims to be coming from Agw

and block it. For example, in Figure 3, Vgw blocks every-
thing that appears to be forwarded by Agw but does not
include Agw ’s correct random value R1, i.e., Vgw blocks
traffic with path {∗Agw:!R1 Vgw eBay}. Note that in the
specific example, Vgw can only block this traffic locally
— escalation is not an option, since no other domain has
deployed AITF.

We defer answering the following questions to later
sections: (i) Exactly how large must each random com-
ponent be? (ii) A router computes its random values
based on a local key; how often does this key expire?
(iii) When the local key changes, all random values com-
municated to victim gateways as part of the handshake
become invalid; does the router notify the corresponding
victim gateways?

5 Evaluation
In this section, we use back-of-the-envelope calculations
to show that (i) a victim can have an undesired flow
blocked within milliseconds; (ii) the victim’s gateway
can block a certain number of undesired flows with two
orders of magnitude fewer filters than flows and a rea-
sonable amount of DRAM; and (iii) the probability of
abusing AITF can be made arbitrarily low.

5.1 Filtering Response Time
We define filtering response time Tfr as the time that
elapses from the moment the victim sends a filtering re-
quest against an undesired flow, until the victim stops
receiving the flow. With AITF, this is equal to the one-
way delay from the victim to the victim’s gateway plus
the negligible overhead of processing the filtering request
and installing the corresponding temporary filter. I.e., fil-
tering response time is a few milliseconds.

If there are compromised routers on the flow’s path,
they can agree to filter the flow and later break the agree-
ment — recall that each attack gateway is given two
chances to cooperate. This results in the victim receiv-
ing “spikes” of the undesired flow after Tfr . Spikes are
spaced out by at least Ttmp seconds; the number of spikes
is bounded from above by 2 × n, where n is the number
of compromised routers on the flow’s path. The effect of
these spikes on the victim is insignificant, as we demon-
strate with later simulation results.

5.2 Filtering Rate, Capacity and Gain
In this section, we examine three basic AITF properties:
how much attack traffic it blocks, how fast it does so, and
at what cost. To quantify these properties, we use three
simple metrics: the filtering rate of a router is the num-
ber of flows that the router can block every second; the
filtering capacity, is the number of flows that the router
can keep blocked simultaneously; the filtering gain is the
number of blocked flows divided by the required number
of filters:

G =
Nflows

Nfilters

For example, G = 1 flow/filter means that the router uses
1 filter to keep 1 flow blocked.

Victim’s gateway — best-case scenario: Assume all at-
tack gateways cooperate and all attack sources comply
with their gateways to avoid disconnection. In this case,
every time Vgw satisfies 1 filtering request, it spends 1
filter for Ttmp seconds and causes 1 flow to be blocked
for Tlong minutes. Thus, if Vgw uses Nfilters filters, it
achieves filtering rate Nfilters

Ttmp
flows/sec, filtering capacity

Nfilters×Tlong

Ttmp
flows, and filtering gain

G =
Tlong

Ttmp

For example, assume Ttmp = 1 sec and Tlong = 10 min.
With 10, 000 filters, Vgw blocks 10, 000 flows/sec and
keeps 6, 000, 000 flows blocked simultaneously.

If certain attack gateways and/or attack sources do not
cooperate, undesired flows occur more than once. Sup-
pose each undesired flow occurs on average n times. In
this case, Vgw spends n temporary filters to cause 1 flow
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to be blocked for Tlong minutes. Thus, filtering rate, ca-
pacity and gain drop by a factor of n. For example, if
all attack sources lie to their gateways, each undesired
flow occurs twice. Then, with 10, 000 filters, Vgw blocks
5, 000 flows/sec and keeps 3, 000, 000 flows blocked si-
multaneously.

Victim’s gateway — worst-case scenario: Now assume
that none of the attack gateways cooperates, filter utiliza-
tion exceeds its threshold, Vgw escalates all filtering re-
quests, and all escalation attempts fail. In this situation,
Vgw blocks traffic from all attack gateways to the victim
locally, which means that with 1 filter, Vgw keeps 1 flow
blocked. I.e., Vgw achieves filtering gain G = 1.

So, the maximum number of filters ever needed on
Vgw to protect a single victim equals the total number
of potential attack gateways. Note that this holds even if
all undesired flows are spoofed — Vgw ends up accept-
ing one flow from each alleged attack gateway, so it still
needs as many filters as there can be attack gateways.

Surprisingly, the number of potential attack gateways
is only a few tens of thousands. According to BGP data
from Route Views [3] (retrieved in February 2005), there
are currently 19, 230 Autonomous Systems (ASes); of
these, roughly 90% correspond to edge domains, while
the rest are Internet Service Providers (ISPs). We pro-
cessed the data with Gao’s algorithm for inferring AS
relationships [15] to get the number of providers per
edge domain. Assuming a separate border router per
customer-provider pair, there are only tens of thousands
of border routers that could act as attack gateways.

To summarize, there may be millions of attack
sources, but there are only tens of thousands of edge do-
mains to host them. A router cannot accommodate a mil-
lion filters, but it does accommodate tens of thousands.
So, if eBay is under attack, eBay’s gateway may be un-
able to locally block each attack source individually, but
it is able to locally block each edge domain individu-
ally — i.e., each edge domain that does not cooperate
to block its own misbehaving clients.

Attack gateway: Every time Agw completes a hand-
shake, it spends 1 filter for Ttmp seconds and causes 1
flow to be blocked. If the attack source complies (to
avoid disconnection), the flow remains blocked for Tlong

minutes, as requested. So, with Nfilters filters, Agw

blocks Nfilters×Tlong

Ttmp
flows, i.e., Agw achieves filtering gain

G =
Tlong

Ttmp
. For example, assume Ttmp = 1 sec and

Tlong = 10 min. Suppose Agw provides connectivity to
64, 000 hosts (a class B network). With 256, 000 filters,
Agw blocks 2, 400 flows from each one of its clients.

If an attack source does not comply, the corresponding
flow recurs before Tlong minutes, Agw completes a sec-
ond handshake and spends again a temporary filter for
Ttmp seconds. However, the attack source gets discon-

nected, which means that it does not come back online,
unless it has been cleaned and patched. Thus, if attack
sources do not comply, the filtering gain of the attack
gateway actually increases, because infected hosts get
disconnected, and Agw does not have to filter their traffic
again.

5.3 DRAM Requirements
Shadow memory: Both Vgw and Agw keep a shadow
filter for each flow that has been blocked. So, the maxi-
mum number of used shadow filters equals the maximum
number of flows simultaneously blocked (i.e., the filter-
ing capacity). Each shadow entry has form {A Agw :
R ... Vgw V }. Assuming R is 64 bits long (see Section
5.4) and flows are classified/filtered based on the last 6
components of their path, each shadow entry is 320 bits
wide (2×32 bits for the IP source and destination, 6×32
bits for the non-random RR path components, and 64 bits
for R). So, to keep a million flows blocked, Vgw needs
about 40 MB of DRAM.

Note that DRAM is not the resource bottleneck; if it
were not for the limited number of wire-speed filters, 40
GB of shadow memory would be enough to keep 1 bil-
lion undesired flows blocked.

Long-term filters on attack source: An attack source
is not necessarily a malicious or compromised node; it is
simply the sender of a traffic flow deemed undesired by
its recipient. An “innocent” host classified as an attack
source needs long-term filters to remember which re-
ceivers do not want its traffic (and avoid disconnection).
Specifically, to satisfy n requests/sec by its provider, the
host needs n×Tlong filters. However, as opposed to wire-
speed filters on routers, software filters on end-hosts are
not a scarce resource.

Note that A does not risk disconnection for not satisfy-
ing requests beyond the agreed rate — a correctly func-
tioning provider does not overload a customer with filter-
ing requests and then disconnect the customer for failing
to satisfy them.

5.4 Probability of Abuse
One potential attack against AITF is to try to guess the
randomized RR header. For example, consider the topol-
ogy of Figure 3 and suppose a set of malicious nodes
(like M ) spoof Stanford addresses and send high-rate
traffic to eBay. Vgw contacts Agw , gets the random value
recorded by Agw on all packets to eBay, and blocks all
spoofed traffic. However, by sending a sufficiently large
number of messages to eBay, the malicious nodes can
try to guess the correct random value by brute force. If
they succeed, they can successfully pretend to be Stan-
ford hosts and potentially cause all traffic from Stanford
to eBay to be classified as undesired and, thus, blocked.
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To limit the probability of such abuse, Agw changes
the process by which it computes its random values ev-
ery Tchange minutes. If the random value is N bits long,
to guess it with probability p, the malicious nodes must
send p × 2N messages. The amount of time it takes to
send that many messages to eBay is bounded from be-
low by eBay’s maximum packet reception rate B. So,
if the random value is N bits long, the malicious nodes
can guess it during one Tchange interval with probabil-
ity p =

Tchange×B

2N . The probability that the malicious
nodes guess one random value in Tguess minutes is the
probability that they guess the random value in any of
the Tguess

Tchange
intervals:

Pguess = 1 − (1 −
Tchange × B

2N
)

Tguess
Tchange

For example, if eBay is connected through a 1 Gbps
link, it receives up to 1.95 million packets/sec.1 Suppose
Tchange = 10 minutes and N = 64 bits. The probabil-
ity that the malicious nodes guess one random value in a
month is 2.74 × 10−7.

Changing the process that computes the random value
creates the following problem: Suppose Agw has com-
municated random values to a number of victim gate-
ways; the moment it changes the process, all communi-
cated random values become invalid. To avoid this prob-
lem, when Agw responds to a handshake, it communi-
cates to the victim’s gateway, not only its current random
value, but also the next Tlong

Tchange
random values and when

they will be valid. By choosing Tchange = Tlong , Agw

must pre-compute one random value.

We should note that the size of the random value can-
not be chosen solely based on the desired probability of
abuse; it also affects the bandwidth overhead introduced
by RR (because each RR-enabled border router adds a
random value to each forwarded packet). We discuss RR
bandwidth overhead in the Appendix, Section A.4.

Another potential attack against AITF is to try to com-
promise the 3-way handshake. For example, consider
the topology of Figure 1 and suppose a set of malicious
nodes pretend to be V ’s gateway and initiate 3-way hand-
shakes with Agw , asking it to block all traffic to V . As-
suming the malicious nodes are not on the path from Agw

to V , they do not see Agw ’s responses and the included
nonce, necessary to complete the handshake. However,
by sending a sufficiently large number of messages, they
can guess the correct nonce by brute force. Following
similar rational as above, the probability to guess one
nonce in Tguess minutes depends on Agw ’s maximum
packet reception rate. For example, if Agw is connected
through a 10 Gbps link, it receives up to 19.5 million
packets/sec. Suppose Tchange = 10 minutes and the

nonce size is 64 bits. The probability that the malicious
nodes guess one nonce in a month is 2.74 × 10−6. For
a 128-bit nonce, the probability becomes 1.3 × 10−25.
Note that, unlike the random value, the nonce is not in-
cluded in every packet forwarded by Agw ; hence, the in-
centive to keep it small is less relevant.

5.5 Good Traffic Lost to Escalation
Escalation blocks all traffic from a non-cooperative at-
tack gateway Agw to the victim; clearly, this can lead to
loss of good traffic. The decision to escalate or not is
made by the victim, because the victim is the only one
who can quantify the value of Agw ’s good traffic versus
the damage caused by Agw ’s attack traffic. For example,
suppose eBay is under attack by a million attack sources,
all connected through AOL; at the same time, it is serv-
ing 1, 000 legitimate AOL clients. If the AOL gateway
does not cooperate, only eBay can decide whether serv-
ing the 1, 000 good AOL clients is worth sustaining the
1, 000, 000 bad ones.

Whether a flow is “escalatable” or not depends on the
policy module. Hence, we cannot compute a general es-
timate of the percentage of good traffic lost to escala-
tion. However, we do implement a simple policy module
in our simulation, and show how its decisions affect the
victim’s good traffic.

6 Simulation Results
We use real Internet routing table data to build a realistic
simulation topology. We simulate different attack scenar-
ios, where multiple attack sources (up to a million) attack
a single victim, connected through a 100 Mbps link; the
victim’s gateway uses up to 10, 000 filters to protect the
victim. For each scenario, we plot the bandwidth of the
attack traffic that reaches the victim as well as the vic-
tim’s goodput as a function of time, i.e., we show how
fast attack traffic is blocked and how much of the vic-
tim’s goodput is restored.

6.1 Framework
We built our simulator within the Dartmouth Scalable
Simulation Framework (DaSSF) [2]. To create our topol-
ogy, we downloaded Internet routing table data from the
Route Views project site [3]. We map each AS and
each edge network to a separate AITF domain — we de-
rive AS topology and peering relationships by applying
Gao’s algorithm for inferring inter-AS relationships [15]
to the Route Views data; we derive edge network topol-
ogy by roughly creating one edge network per advertised
class A and class B prefix. Each AITF domain is repre-
sented by one AITF router. AITF routers are intercon-
nected through OC-192 (9.953 Gbps) and OC-48 (2.488
Gbps) full-duplex links. End-hosts are connected to their
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Figure 5: t = 1 sec: attack starts; t = 2 − 3 sec: V detects
the attack and sends 10, 000 filtering requests to its gateway;
t = 3 − 4 sec: flows recur for the first time; t = 4 − 5 sec:
flows recur for the second time, and Vgw blocks all traffic from
the compromised gateways.

routers through Fast (100 Mbps) and Thin (10 Mbps)
Ethernet full-duplex links. Internet round-trip times av-
erage 200 msec. Host-to-router round-trip times average
20 msec. In all scenarios, Ttmp = 1 sec and Tlong = 2
min.

6.2 Filtering Response Time
Our first experiment demonstrates that AITF achieves a
filtering response time equal to the one-way delay from
the victim to its gateway, i.e., on the order of millisec-
onds. It also demonstrates that “lying” gateways are
quickly detected and blocked; the worst each lying gate-
way can do is cause up to two “spikes” spaced out by at
least Ttmp seconds.

Scenario 1: The victim receives a flooding attack by
10, 000 attack sources, each behind its own attack gate-
way. The bandwidth of the attack (before defense) is
1 Gbps. All attack gateways are lying, i.e., they agree
to block their undesired flows and then break the agree-
ment.

Figure 5 illustrates that Vgw blocks attack traffic within
milliseconds from the moment the attack is detected; at-
tack traffic recurs twice and is completely blocked within
2 seconds. Vgw gives two chances to each attack gateway
to honor its filtering agreement; when the attack gate-
ways break their agreements twice, all their traffic to V

is blocked. We run the experiment only for 10, 000 unde-
sired flows (which allows the victim to have all of them
blocked within 1 sec), so that the “spike” effect due to
the recurring flows is visible.

6.3 Filtering Gain
The next two experiments demonstrate that the victim’s
gateway can achieve filtering gain on the order of hun-
dreds, i.e., the victim’s gateway blocks two orders of
magnitude more flows than it uses filters.

Scenario 2: The victim receives a flooding attack by
100, 000 attack sources. The bandwidth of the attack
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Figure 6: t = 0−1 sec: V is receiving ∼ 80 Mbps of goodput;
t = 1 − 2 sec: attack drops V ’s goodput to 12% of original;
t = 2 sec: V starts sending 10, 000 filtering requests/sec to
its gateway; t = 12 sec: V ’s goodput is restored to 100% of
original.
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Figure 7: t = 0−1 sec: V is receiving ∼ 80 Mbps of goodput;
t = 1 − 2 sec: attack drives V ’s goodput to 12% of original;
t = 2 sec: V starts sending 10, 000 filtering requests/sec to
its gateway; t = 104 sec: V ’s goodput is restored to 100% of
original; t = 122 sec: filtering requests start expiring, unde-
sired flows are released and re-blocked, 10, 000 at a time.

(before defense) is 1 Gbps. The victim’s goodput (be-
fore the attack) is approximately 80 Mbps. All attack
gateways cooperate.

Scenario 3: Similar to scenario 2, but the victim receives
a flooding attack by 1, 000, 000 attack sources.

Figures 6 and 7 show that, using 10, 000 filters, Vgw

blocks 100, 000 flows in 10 seconds and 1, 000, 000
flows in 100 seconds. Without AITF, a router needs a
million filters to block a million flows; these experiments
demonstrate that, with AITF, Vgw needs only ten thou-
sand filters to block a million flows. Hence, AITF re-
duces the number of filters required to block a certain
number of flows by two orders of magnitude — a critical
improvement, since routers typically accommodate tens
of thousands of filters, whereas DDoS attacks can easily
consist of millions of flows. Figure 7 also reveals what
happens after Tlong = 2 minutes. We assume that attack
sources are “smart”, i.e., they pause sending an undesired
flow when so requested (to avoid disconnection) and they
restart after Tlong = 2 minutes.

6.4 Escalation and Lost Goodput
The last two experiments illustrate the trade-off involved
in policy decisions regarding non-cooperative gateways.
The victim’s gateway may decide to escalate and lose
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Figure 8: t = 0−1 sec: V is receiving ∼ 80 Mbps of goodput;
t = 1 − 2 sec: attack drives V ’s goodput to 12% of original;
t = 2 sec: V starts sending 10, 000 filtering requests/sec to its
gateway; t = 2 − 8 sec: half of the attack gateways do not
cooperate, so Vgw escalates and blocks all their traffic; t = 8

sec: V ’s goodput is restored to 50% of original.

all traffic from a non-cooperative gateway to the victim;
alternatively, it may decide to locally block as many un-
desired flows as possible and let the rest through. Al-
though we did not implement a complete policy module,
we choose two “extreme” scenarios, each favoring a dif-
ferent decision, implement the best policy for each sce-
nario, and show the results.

Scenario 4: The victim receives a flooding attack,
but, this time, half of the attack gateways are non-
cooperative. Good and bad sources are collocated, i.e.,
evenly distributed behind the same gateways. The attack
comes from 100, 000 attack sources; attack bandwidth
(before defense) is 1 Gbps. The victim’s goodput (before
the attack) is approximately 80 Mbps.

Figure 8 shows that, using 10, 000 filters, Vgw restores
50% of the victim’s goodput in 6 seconds. In this sce-
nario, attack traffic has 10 times the rate of good traffic.
The policy module chooses to block all traffic from non-
cooperative attack gateways. This cannot make things
any worse, since most good traffic is being dropped any-
way due to the flood; on the contrary, it allows good traf-
fic from cooperative gateways to get through.

Scenario 5: In this scenario, all attack gateways are non-
cooperative, and good and bad sources are collocated.
However, the attack comes from fewer attack sources
(20, 000) and consumes lower bandwidth (160 Mbps, be-
fore defense). The victim’s goodput (before the attack)
is approximately 80 Mbps.

Figure 9 shows that, using 10, 000 filters, Vgw restores
75% of the victim’s goodput in a few milliseconds from
the moment the attack is detected. This scenario is trick-
ier than the previous one, because attack traffic has only
twice the rate of good traffic. In this case, escalating
would be disastrous — it would drop goodput to 0, be-
cause good and bad sources are collocated. The policy
module chooses to block as many flows as possible lo-
cally and let the rest through. This results in half the
attack traffic being dropped and half getting through,
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Figure 9: t = 0−1 sec: V is receiving ∼ 80 Mbps of goodput;
t = 1−2 sec: attack drives V ’s goodput to ∼ 50% of original;
t = 2 sec: V starts sending 10, 000 filtering requests/sec to its
gateway; none of the attack gateways cooperate, so Vgw blocks
locally as many flows as possible and lets the rest through; t =

2 − 3 sec: V ’s goodput is restored to ∼ 75% of original.

which allows only 75% of the victim’s goodput to get
through. I.e., the victim prefers to sustain some attack
traffic from non-cooperative attack gateways, rather than
sacrificing all their good traffic.

7 Deployment
This section describes how AITF can be deployed in to-
day’s Internet. We also consider the incentives for early
adopters and compatibility with legacy hosts.

7.1 Model
Rather than requiring every Internet router to support
AITF, it is sufficient for the border routers between ad-
ministrative domains to support it. We introduce the
notion of an AITF domain as an administrative domain
whose border routers are AITF-enabled.

An AITF domain has a filtering contract with each lo-
cal end-host and peering domain. Such a contract speci-
fies a maximum filtering request rate, i.e., the maximum
rate at which the AITF domain can send/receive requests
to block undesired flows to/from each end-host and peer-
ing domain. An AITF domain enforces the specified
rates and indiscriminately drops messages from an end-
host/domain when that party exceeds the agreed rate.

In a way, an AITF domain is the “dual” of a BGP Au-
tonomous System (AS): ASes exchange routing informa-
tion, which communicates their willingness to relay cer-
tain packets. Similarly, AITF domains exchange filtering
information, which communicates their unwillingness to
receive certain packets. However, an AITF domain dif-
fers from an AS, in that it exchanges messages with other
AITF domains that are not adjacent to it — recall that the
victim’s gateway talks directly to the attack gateway. It
seems natural for every AS to map to a separate AITF
domain. Popular public-access sites, like eBay or Ama-
zon, may even deploy AITF on their corporate firewalls,
to avoid sharing a victim’s gateway with other customers
of their AS.
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Our position is that the filtering contract should be part
of the Service Level Agreement (SLA) signed between
the customer and the service provider. In this way, when
a domain agrees to provide a certain amount of band-
width to a customer, the provider also agrees to satisfy a
certain rate of filtering requests coming from that cus-
tomer. At the same time, the customer agrees to sat-
isfy a certain rate of filtering requests coming from the
provider. The customer-provider pair can be an end-host
and an edge network, or an edge network and an ISP, or
even a small ISP and a backbone network.

7.2 Incentive for Initial Deployment
It makes sense for AITF deployment to begin at the
edges: An edge network that hosts potential DDoS vic-
tims (e.g., a web hosting domain) deploys AITF to pro-
tect its clients; an edge network that hosts potential attack
sources (e.g., a campus network or a dialup provider) de-
ploys AITF to maintain its connectivity to public-access
sites, even when these sites are under attack.

For example, in Figure 3, we depicted an early de-
ployment stage, where only eBay and Stanford have de-
ployed AITF. Suppose a worm compromises millions
of attack sources, uniformly distributed across the In-
ternet, and commands them to send high-rate traffic to
eBay. Without AITF, there is nothing eBay can do; al-
most all its good traffic is lost in the flood. With AITF,
eBay identifies the undesired flows coming from Stan-
ford; eBay’s gateway exchanges a handshake with Stan-
ford’s gateway, which agrees to block its undesired flows
to eBay; eBay’s gateway accepts all traffic from Stanford
and drops (or rate-limits) all the rest — most good traf-
fic to eBay is lost anyway due to the attack, so dropping
traffic from AITF-unaware domains cannot make things
worse. I.e., Stanford is the only domain that cooperates
with eBay and, hence, the only domain to maintain its
connectivity to eBay throughout the attack.

To conclude, the first domains to deploy AITF benefit,
because they preserve their connectivity to each other in
the face of DDoS attacks. As AITF deployment spreads,
the benefit of AITF-enabled domains grows, because
they maintain their connectivity to larger and larger por-
tions of the Internet.

7.3 Compatibility with Legacy Hosts
AITF involves a rather draconian measure against attack
sources: Either they stop sending an undesired flow or
they get disconnected. One could argue that malicious
node M can abuse this measure to disconnect legacy host
L: M sends a filtering request to L’s gateway to block all
traffic from L to M ; L’s gateway sends a similar request
to L (which is ignored, since L is AITF-unaware); then
M tricks L into sending it traffic (e.g., sends an ICMP
request); as a result, L’s gateway disconnects L.

This scenario cannot happen. Recall that an AITF do-
main has a filtering contract with each of its customers;
the contract specifies the maximum rate at which the do-
main sends filtering requests to the customer. An AITF-
unaware customer by definition has agreed to rate 0;
hence, its provider never sends filtering requests to it.

A domain that deploys AITF either forces its end-hosts
to deploy AITF as well, or accepts the cost of filtering
their undesired flows; for example, L’s gateway locally
blocks all traffic from L to M for Tlong minutes. The
second option is more incrementally deployable, but re-
quires more filtering resources from an attack gateway —
namely, as many filters as undesired flows generated by
its end-hosts. As a compromise, a provider can charge
legacy customers that do not support AITF, for the po-
tential cost induced by their inability to block their unde-
sired traffic themselves.

8 Discussion of Additional Attacks
Malicious nodes collocated with the victim: The hand-
shake between the victim’s gateway and the attack gate-
way protects only the communication between these two
entities; it does not protect the communication between
the victim and the victim’s gateway. A malicious end-
host located on the same LAN with end-host V can
clearly spoof V ’s address, send filtering requests as V ,
and disrupt V ’s communications.

An AITF domain can easily avoid such abuses by ei-
ther preventing source address spoofing in its own net-
work or authenticating local filtering requests. Note that
the latter does not require any public key infrastructure; it
only requires from each border router of an AITF domain
to share a secret with each of the domain’s customers.

DDoS against AITF: One could argue that a set of ma-
licious nodes can launch the following attack against
router Agw : First, pretend they are victim gateways and
send a high rate of filtering requests to exhaust Agw ’s
filters. Once Agw ’s filters are exhausted, a malicious
node located behind Agw is commanded to start an unde-
sired flow against, say, Google; Google asks from Agw to
stop, Agw has no filters left and gets disconnected from
Google.

The first thing to note is that the attack gateway uses
the 3-way handshake to verify the “authenticity” of a fil-
tering request, i.e., that the requester is on the path to
the alleged victim. Once a request is deemed authen-
tic, the identity of the requesting victim gateway is es-
tablished, and the attack gateway can accept or drop the
corresponding request based on that. The attack gateway
satisfies up to a certain rate of requests from each victim
gateway to avoid exhausting all its filters to satisfy a few
demanding domains.

 



2005 USENIX Annual Technical Conference USENIX Association146

Now consider a set of malicious nodes seeking to at-
tack router Agw . One way is to send to Agw a high rate
of authentic filtering requests; the only thing they accom-
plish is to exhaust the quota of their own domains.2 The
other way is to send to Agw a high rate of spoofed filter-
ing requests; now their requests are dropped. The only
harm the malicious nodes can do is launch a SYN-flood-
style attack, i.e., flood Agw with fake requests, hoping
to exhaust the processing cycles devoted to 3-way hand-
shakes.

There are two steps to dealing with such attacks. The
first one is to implement the part of the attack gateway
algorithm that deals with the 3-way handshake in the fast
path — it just involves hashing certain contents of a re-
ceived message and comparing the result to a value in-
cluded in the message. The second step is to let Agw act
as the victim: if a set of malicious nodes manage to flood
Agw ’s AITF (or any other) hardware module, then Agw

uses the RR headers of incoming traffic to identify unde-
sired flows and asks from its own gateway to have them
blocked.

Malicious on-the-path nodes: The handshake between
the victim’s gateway and the attack gateway prevents ma-
licious node M from installing a filter on router Agw to
block certain traffic to router Vgw , as long as M is off
the path from Agw to Vgw . A malicious node on the path
from Agw to Vgw can clearly forge filtering requests and
disrupt Agw -Vgw communication.

However, a malicious node on the path from Agw to
Vgw can only be an Internet core router; such a mali-
cious router can disrupt Agw -Vgw communication any-
way, e.g., by blocking all their traffic. I.e., if a core
router gets compromised, thousands of domains that con-
nect through that router are at its mercy — it makes little
difference whether the router is AITF-enabled or not.

9 Related Work
Packet Marking: The alternative to route record is prob-
abilistic packet marking (PPM)[21, 14]: Each partici-
pating router marks each forwarded packet with certain
probability p; a DDoS victim combines marks from mul-
tiple packets to identify the routers that forward attack
traffic. Instead of using a separate header, PPM uses a
lightly utilized IP header field (typically the 16-bit IP
identifier); doing so facilitates deployment and decreases
packet overhead. Although a promising and incremen-
tally deployable traceback technique, PPM is less useful
in actually blocking attack traffic. Identifying the routers
that forward attack traffic is not enough; the victim’s
gateway Vgw must identify their traffic in order to block
it. Even if attack gateway Agw agrees to block an unde-
sired flow, Vgw must still identify Agw ’s traffic in order
to verify that Agw is honoring the agreement. Therefore,

Vgw must be able to identify the path followed by each
incoming packet at wire speed. The only way to perform
path-based wire-speed filtering is to have each packet’s
path deterministically recorded on the packet.

One could certainly argue for “compressing” the path
— no need to record one full 32-bit address per border
router! In Path Identifier (Pi) [23], each participating
router deterministically marks the forwarded packets, so
that each packet obtains a “fingerprint” that reflects the
entire path followed by the packet. Indeed, this approach
enables the victim (or its gateway) to locally block unde-
sired flows in the face of source address spoofing. How-
ever, it does not meet the two following requirements: (i)
Vgw must know the addresses of the border routers on an
undesired flow’s path; otherwise, it must locally block
all attack flows itself, which is typically beyond its ca-
pabilities. (ii) Vgw must be able to block attack traffic at
different granularities, e.g., block all packets with path
{∗ Agw ... Vgw V }.

Filtering: The Pushback scheme [18] uses hop-by-hop
filter propagation to push filtering of undesired traffic
away from the victim: The victim identifies the upstream
routers that forward attack traffic to it and sends them
filtering requests; the routers satisfy the requests, poten-
tially identify the next upstream routers that forward at-
tack traffic to the victim, and send them similar requests.
Each Pushback router installs a single filter per victim
and rate-limits all traffic to each victim. The main bene-
fit of this approach is that its does not require knowledge
of the attack paths, which makes it deployable without
packet marking. However, when attack traffic and good
traffic share common paths, and attack traffic is of much
higher rate than good traffic (increasingly the case, nowa-
days), rate-limiting all traffic to the victim sacrifices most
of the victim’s good traffic.

The Stateless Internet Flow Filter (SIFF) [9] divides
all Internet traffic into privileged and non-privileged. A
client establishes a privileged channel to a server through
a capability exchange handshake; the client includes
the capability in each subsequent packet it sends to the
server; each router along the path verifies the capability
and gives priority to privileged traffic. The main advan-
tage of SIFF is that it does not require any filtering state
in the routers. However, once a server is under attack,
a new client must contend with attack traffic to establish
a connection — because channel establishment involves
an exchange of non-privileged packets. It also requires
counter-measures to prevent malicious nodes from es-
tablishing privileged channels between themselves and
flood the network with privileged traffic.

Secure Overlays: The set of AITF-enabled border
routers can be viewed as a “filtering overlay”. Filtering
overlays have also been suggested as a way to prevent
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DoS against critical applications (like Emergency Ser-
vices) that are meant to be accessed only by authorized
users [16, 12]. In that context, the overlay nodes per-
form client authentication and relay traffic to a protected
server, whose IP address is unknown outside the overlay.

10 Conclusion

We presented Active Internet Traffic Filtering (AITF),
a mechanism for filtering highly distributed denial-of-
service attacks. We showed that AITF can block a mil-
lion undesired flows, while requiring only tens of thou-
sands of wire-speed filters from each participating router
— an amount easily accommodated by today’s routers.
It also prevents abuse by malicious nodes seeking to dis-
rupt other nodes’ communications.

More specifically, we showed the following:
1. AITF offers filtering response time equal to the one-

way delay from the victim to the victim’s gateway. I.e.,
a victim can have an undesired flow blocked within mil-
liseconds.

2. AITF offers filtering gain on the order of hundreds
of blocked flows per used filter. I.e., a router can block
two orders of magnitude more flows than it has wire-
speed filters. For example, suppose eBay is receiving a
million undesired flows; with 10, 000 filters, eBay’s gate-
way can have all flows blocked within 100 seconds. In
the worst-case scenario, eBay’s gateway blocks all traffic
from each domain that hosts attack sources and refuses
to filter their traffic, which (in today’s Internet) requires
a few tens of thousands of filters.

3. A set of malicious nodes can practically not abuse
AITF to disrupt communication from node A to node B,
as long as they are not located on the path from A to B.
This holds even during initial deployment, where most
Internet domains are AITF-unaware.

The idea behind AITF is that the Internet does have
enough filtering capacity to block large amounts of un-
desired flows — it is just that this capacity is concen-
trated close to the attack sources. AITF enables service
providers to “gain access” to this filtering capacity and
couple it with a reasonable amount of their own filtering
resources, in order to protect their customers in the face
of increasingly distributed denial-of-service attacks.
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A Appendix: Route Record
A.1 Header Update
The RR header consists of three fields: the path is a list of
(initially empty) slots; the size is the total number of slots
in the path; the pointer points to the first empty slot in the
path. The first RR-enabled border router on a packet’s
path (i) inserts an RR header in the packet; (ii) writes its
own IP address and random value in the first slot; and
(iii) sets the pointer to point to the second slot. Each
subsequent RR-enabled border router that ingresses the
packet into a new AS (i) reads the pointer; (ii) writes its
own IP address and random value in the indicated slot;
and (iii) increments the pointer to point to the next slot.
If there is no room left in the RR header, the router drops
the packet.

A.2 Hardware Support
Each RR-enabled border router updates the RR headers
of forwarded packets as described in Section A.1. RR-
header update requires (i) computing a keyed hash func-
tion on the packet’s destination, (ii) reading and modify-
ing the RR pointer, and (iii) writing the router’s address
and random value on the indicated slot. So, although
the RR header has a variable length, its update requires
reading/modifying a 4-bit pointer and a 96-bit path com-
ponent (assuming 64-bit random values). Computing a
64-bit hash (like HMAC-SHA1) per forwarded packet
can be easily done today at wire-speed [11].

As mentioned in Section A.1, RR headers are not in-
serted by end-hosts; they are inserted by the first bor-
der router on each packet’s path — call it the packet’s
“gateway”. So, when an edge network deploys RR, it up-
grades its border routers to support RR-header insertion.
A border router determines the required RR header size
for each packet, by looking up the AS path length to the
packet’s destination domain as communicated through
BGP. If the real AS path turns out to be longer than
the communicated AS path, the packet gets dropped; the
packet’s gateway receives an ICMP message, increases
the RR header size and retransmits the packet — i.e., AS
path length discovery is similar to MTU discovery using
the “Don’t Fragment” IP-header flag. Once a router dis-
covers the real AS path length to a destination domain, it
caches its value to avoid future retransmissions.

RR-header insertion is similar to packet encapsulation,
a well-studied operation, for which multiple hardware
implementations already exist. Note that, as stated in
Section 7.2, RR/AITF deployment starts at the edges;
i.e., it is edge routers that insert RR headers, not core
routers connected to Internet backbones. Edge routers
are connected at best through OC-48 (2.488 Gbps) links;
the Cisco 10000 Series OC-48c linecard already supports
encapsulation.
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A.3 Compatibility with Legacy Hosts
Before inserting an RR header in an outgoing packet, the
packet’s gateway must make sure that the receiving do-
main has deployed RR; otherwise, the receiver will not
recognize the RR header and drop the packet. Hence,
each packet gateway keeps track of the destination ASes
to which it forwards packets, and asks them whether they
care to receive RR headers.

To avoid introducing latency, a packet gateway for-
wards packets without inserting RR headers and starts
doing so as soon as it concludes that the destination do-
main is RR-enabled. To avoid querying the destination
domain on each packet, it periodically queries poten-
tial destination domains (e.g., once per hour) and caches
their response. Note that the number of potential des-
tination domains can be no bigger than the number of
Internet ASes — 19, 230 for the current Internet.

A.4 Bandwidth Overhead
RR bandwidth overhead depends on the average number
of ASes per packet path. Although we do not know this
number, we can approximate it with the average number
of AS-level hops between Internet ASes, which is close
to 4 [17, 10]. Assuming an average of 4 ASes per Internet
path and 64-bit random values, route record introduces
on average 49 extra bytes per packet. For an average
packet size of 500 bytes [5], this leads to 10% bandwidth
overhead.

Bandwidth overhead can be reduced to 5% by using
the following twist: Instead of each router adding a ran-
dom value to the recorded path, only one router does so;
the first border router that forwards the packet into an
RR-unaware domain. For example, consider the topol-
ogy in Figure 1; suppose only ANET , AISP and VNET

have deployed AITF. If a packet is sent from A to V ,
the only router that adds a random value to the packet’s
header is X . This reduces bandwidth overhead, at the
cost of restricting the routing of filtering requests: If V

sends a filtering request against A’s traffic, that request
must be routed through X , so that X verifies the authen-
ticity of the recorded path.

Notes
1To make our analysis conservative, we assume that eBay responds

to all the messages sent by the malicious nodes. In reality, if a set
of nodes send such high-rate traffic to eBay, eBay will consider their
traffic undesired and use AITF to have it blocked.

2An AITF-enabled border router can prevent its own clients from
pretending to be victim gateways and exhausting its quota, simply by
dropping all outgoing filtering requests — recall that no other node but
the border router itself is supposed to send filtering requests outside the
local domain.
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