
10-20x Faster
Software Builds
10-20x Faster

Software Builds

John Ousterhout

2307 Leghorn Street
Mountain View, CA 94043
www.electric-cloud.com

Slide 2

OverviewOverview
Slow builds impact almost all
medium/large development teams

Electric Cloud speeds up builds
10-20x:

Harnesses clusters of inexpensive
servers
Unlocks concurrency by deducing
dependencies
Minimizes scalability bottlenecks

Faster builds mean
Faster time to market
Higher product quality
Ability to do more with less

Design, create,
manage sources

Software
buildsTest

Slide 3

OutlineOutline
The impact of slow builds

The holy grail: concurrent builds

Dependencies: problem and solution

Electric Cloud architecture

Managing files

Limiting bottlenecks

Performance measurements

Slide 4

Problem: Slow BuildsProblem: Slow Builds
Over 500 companies surveyed, average build 2-4 hours

5-15% loss in engineering productivity:
Wasted engineering time & frustration
Less time to fix bugs, add features

5-10% delay in time to market:
Slow builds add weeks to release cycles
Uncertainty & risk due to last-minute
broken builds

Quality & customer satisfaction:
Developers can’t rebuild before check-in
QA waiting on broken builds or skipping tests to
meet deadlines
More bugs escape to the field

Slide 5

Personal ExperiencePersonal Experience

Slow builds drove me crazy
Sprite research project (Berkeley, late ’80s):

Most popular feature was “pmake”
Painful to return to commercial OS’es

Interwoven, 2000-2001:
7-10-hour builds
> 1 month with no successful daily builds, late in a release
cycle

Discovered that they drive everyone crazy!

Founded Electric Cloud to solve the problem

Slide 6

Theoretical Solution:
Concurrency
Theoretical Solution:
Concurrency

01010
10101
01010
10101

01010
10101
01010
10101

01010
10101
01010
10101

01010
10101
01010
10101

01010
10101
01010
10101

01010
10101
01010
10101

01010
10101
01010
10101

Source
Code

Object
Files

Executables

Release

Builds have inherent
parallelism
Solution: split up builds and
run pieces concurrently

Large SMP Machines (gmake –j)
Distributed builds (distcc)01010

10101
01010
10101

01010
10101
01010
10101

01010
10101
01010
10101

01010
10101
01010
10101

Libraries

01010
10101
01010
10101

If only it were this easy…

Slide 7

Problem: DependenciesProblem: Dependencies

01010
10101
01010
10101

01010
10101
01010
10101

01010
10101
01010
10101

01010
10101
01010
10101

01010
10101
01010
10101

01010
10101
01010
10101

01010
10101
01010
10101

Source
Code

Object
Files

Executables

Release

Builds have inherent
parallelism
Solution: split up builds and
run pieces concurrently

Large SMP Machines (gmake –j)
Distributed builds (distcc)

Current attempts to speed
builds yield small results
Dependency problems:

Incomplete
Can’t be expressed between
Makefiles
Result: broken builds

Difficult to get more than a 2-3x speedup
Hard to maintain Makefiles

01010
10101
01010
10101

01010
10101
01010
10101

01010
10101
01010
10101

01010
10101
01010
10101

Libraries

01010
10101
01010
10101

Slide 8

Electric Cloud SolutionElectric Cloud Solution
Deduce dependencies on-the-fly:

Watch all file accesses: these indicate dependencies
Automatically detect out-of-order steps

10101010
10101010
10101010
10101010
10101010
10101010
10101010

Link
library

x.lib
Link
app.

write read

Desired Actual

10101010
10101010
10101010
10101010
10101010
10101010
10101010

Link
library

x.lib
write

10101010
10101010
10101010
10101010
10101010
10101010
10101010

x.lib
Link
app.

read

old!
Run in
parallel?
Error!

Slide 9

Electric Cloud SolutionElectric Cloud Solution
Deduce dependencies on-the-fly:

Watch all file accesses: these indicate dependencies
Automatically detect and correct out-of-order steps
Save discovered dependencies for future builds
Result: high concurrency possible

10101010
10101010
10101010
10101010
10101010
10101010
10101010

Link
library

x.lib
Link
app.

write read

Desired Actual

10101010
10101010
10101010
10101010
10101010
10101010
10101010

Link
library

x.lib
write

10101010
10101010
10101010
10101010
10101010
10101010
10101010

x.lib
Link
app.

read

old!

Discard

Link
app.

Rerun
read

Slide 10

Electric Cloud ArchitectureElectric Cloud Architecture

Cluster
Manager

Manager

Cluster

Electric Make

Make Machine

Plug-in replacement for
GNU Make, Microsoft
NMAKE

Plug-in replacement for
GNU Make, Microsoft
NMAKE

Inexpensive rack-mounted
servers run pieces of build
in parallel

Inexpensive rack-mounted
servers run pieces of build
in parallel

Web-based reporting,
management tools

Web-based reporting,
management tools

Node

Electric
File System

AgentNode

Electric
File System

AgentNode

Electric
File System

Agent Node

Electric
File System

Agent

Network

Slide 11

Clustering ApproachClustering Approach

Advantages (vs. multiprocessor):
Cost-effective: $1-2K per CPU
Scalable: no hard limit to cluster size

Potential problems:
Build state not necessarily available on nodes
Overhead for network communication
Robustness: more pieces that can break

Slide 12

VirtualizationVirtualization
Node environment must duplicate make
machine; hard because of

Different environments on different make
machines
File versioning within a build
ClearCase views

Simple application-specific network file
system:

Electric Make is server
Agent is client, fetches files on demand
Virtualizes subtree(s) from make machine
Files cached on nodes during a build

On Windows, registry data is also
virtualized on nodes

Electric Make

Make Machine

Node

Electric
File System

Agent

Network

Server

Client

Slide 13

Versioning File SystemVersioning File System

Files can have many versions during build:
Append to log file
Debug/release versions compiled to same .o files

Each read must return correct version (based on
sequential order for build)
Electric Make maintains version history for each file

Tricky: name space must be versioned also

Network file system passes appropriate version to
each job, flushes caches when necessary

Example: log file extended with series of appends

Read #1 Read #2 Read #3

Slide 14

Network OptimizationNetwork Optimization

P2P file transfers offload 20-25% of outbound traffic:
Take advantage of inexpensive bandwidth within switch

Just-in-time compression cuts traffic 2.5-3x:
Match network bandwidth to disk

Electric Make

Make Machine

Node

Electric
File System

Agent

Network

Node

Electric
File System

AgentNode

Electric
File System

AgentNode

Electric
File System

Agent

Network bandwidth
concentrates at make
machine

Peer-to-peer file transfer

Slide 15

File System OptimizationFile System Optimization
Highly parallel builds stress build machine’s file
system :

Average bandwidth as high as 10-20 MB/s
ClearCase? High latency

All disk I/O passes through Electric Make:
opportunity to manage read & write concurrency

Single disk? Concurrency causes extra head motion
Network file system? More concurrency hides network
latency

Metadata caching improves ClearCase performance
significantly

Slide 16

Recursive MakesRecursive Makes

Gmake: separate gmake invocation for each Makefile:
Hard to extract & manage concurrency
Can’t manage dependencies across Makefile

Electric Make: merge Makefiles
Recursive makes return immediately with parameter info
Top-level emake manages multiple make instances

all: a b
cc child1/mod1.a child2/mod2.a ...

a:
make -C child1

b:
make -C child2

all: a b
cc child1/mod1.a child2/mod2.a ...

a:
make -C child1

b:
make -C child2

mod1.a: a.o b.o c.o
ar r mod1.a a.o b.o c.o
ranlib mod1.a

a.o: ...
b.o: ...
c.o: ...

mod1.a: a.o b.o c.o
ar r mod1.a a.o b.o c.o
ranlib mod1.a

a.o: ...
b.o: ...
c.o: ...

mod2.a: x.o y.o z.o
ar r mod1.a x.o y.o z.o
ranlib mod2.a

x.o: ...
y.o: ...
z.o: ...

mod2.a: x.o y.o z.o
ar r mod1.a x.o y.o z.o
ranlib mod2.a

x.o: ...
y.o: ...
z.o: ...

Makefile

child1/Makefile

child2/Makefile

Slide 17

Recursive Makes, cont’dRecursive Makes, cont’d
Where this works well:
all:

for i in “a b c d e f g”; do \
cd $$i; $(MAKE); cd ..; \

done

Where this doesn’t work so well (output of
submakes is used):
all:

for i in “a b c d e f g”; do \
cd $$i; $(MAKE) >> log; cd ..; \

done

Must modify Makefiles in some cases

Slide 18

CompatibilityCompatibility

Plug-compatible with GNU Make, Microsoft NMAKE:
Change ‘gmake’ or ‘nmake’ to ‘emake’ in build scripts
Identical command-line options
Identical results (except builds run faster)
Identical log file output
Typically a few Makefile changes to maximize speedup

Slide 19

ManageabilityManageability
Web-based administration

As easy to manage many nodes as 1 node

Can be used by entire team:
Supports multiple simultaneous builds
Priority system for node allocation

Robust: automatic fail-over on node failures

Slide 20

Results: Open SourceResults: Open Source

Local 20 CPUs Speedup
Samba 952s 58s 16.4x
MySQL 1400s 124s 11.3x
Gtk 891s 95s 9.4x

0

5

10

15

20

0 5 10 15 20

#CPUs in cluster

Sp
ee

du
p

Samba
MySQL
Gtk

0

5

10

15

20

0 5 10 15 20

#CPUs in cluster

Sp
ee

du
p

Samba
MySQL
Gtk

Slide 21

Results: Linux KernelResults: Linux Kernel
Linux Kernel 2.6.1

Make bzimage + modules

2.8 GHz Xeon, 1 GB RAM, IDE Drive

Build
Time

[mm:ss]

Speedup

Local 22:08
5 nodes 5:09 4.3x
10 nodes 2:40 8.3x
15 nodes* 2:03 10.8x
20 nodes* 1:42 13.0x

* Projected build time

1328

309
160 123 102

0

200

400

600

800

1000

1200

1400

local 5 10 15 20

Slide 22

Telecom Equip. VendorTelecom Equip. Vendor

110

10

0

20

40

60

80

100

120

GNU Make -j8 Electric Cloud 16 Nodes

B
ui

ld
 T

im
e

(m
in

ut
es

)

Impact: 3 week savings out of
an 8 month release cycle expected

11x
Speedup!

Slide 23

Enterprise Software Co.Enterprise Software Co.

Solaris 2.8

0

50

100

150

200

250

300

GNU Make Electric Cloud (30 nodes)

B
ui

ld
 T

im
e

(m
in

ut
es

)

274

0:13

20x
Speedup!

Impact: Enabled worldwide follow-the-sun development

Slide 24

Electric CloudElectric Cloud

We eat our own dog food

Continuous build system:
Start build and test cycle whenever changes are
committed to the main branch

25.5

7.4

0.0

5.0

10.0

15.0

20.0

25.0

30.0

GNU Make Electric Cloud 7 nodes

B
ui

ld
 T

im
e

(m
in

ut
es

)

Slide 25

What about distcc?What about distcc?
Works with gmake –j

Distributes compile steps to nodes

Preprocesses code on make machine:
Preprocessed code is self-contained: eliminates
virtualization issues

Slide 26

distcc vs. Electric Clouddistcc vs. Electric Cloud
distcc:

Free
Works with other build tools
(SCons?)
Portable
Compiler-specific (gcc)
Less scalable:

Only distributes compiles;
preprocessing centralized
Missing dependencies
break build

Build log scrambled
No cluster sharing facilities?

Electric Cloud:
Not free
Only works with Make

Windows, Linux, Solaris
Works with all compilers
More scalable:

Distributes all build steps
(even Makefile parsing)
Deduces dependencies to
avoid build breakage
Parallelizes sub-makes

Build log in sequential order
Cluster mgmt/sharing

Slide 27

Electric Make vs. DistccElectric Make vs. Distcc

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

Electric Make

GNU make/distcc

Apache

Number of Agents

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

Electric Make

GNU make/distcc

Number of Agents

Sp
ee

du
p

Linux Kernel

0
1
2
3
4
5
6
7
8
9

0 2 4 6 8 10

Electric Make

GNU make/distcc

MySQL
Sp

ee
du

p

Number of Agents

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

Electric Make
GNU make/distcc

Mozilla

Sp
ee

du
p

Number of Agents

distcc
breaks
build

Slide 28

Performance LimitsPerformance Limits
File system on make machine

ClearCase dynamic views particularly slow
Windows: large .pdb and .pch files

Serializations within builds
Linking slow on Linux

Make machine CPU not an issue
Typically running at 30% utilization

Slide 29

Impact of 10-20x SpeedupImpact of 10-20x Speedup

Build Time Impact

14 hours Build doesn’t finish overnight

6 hours Overnight build

2 hours Multiple revs in a single day

30 min. Full rebuild before checkin

5 min. Little need to switch context

1 min. No need to switch context

2-3x

2-3x

2-3x

2-3x

2-3x

Electric Cloud can drop you two bands

Slide 30

ConclusionConclusion

No need to tolerate slow builds anymore

Faster builds mean
Faster time to market
Higher quality
Ability to do more with less

Slide 31

More InformationMore Information

For more information or to answer additional
questions:

Visit our website: www.electric-cloud.com
E-mail: info@electric-cloud.com
Phone: 650-962-4777

http://www.electric-cloud.com/
mailto:info@electric-cloud.com

Slide 32

	10-20x Faster�Software Builds
	Overview		
	Outline
	Problem: Slow Builds
	Personal Experience
	Theoretical Solution:�Concurrency
	Problem: Dependencies
	Electric Cloud Solution
	Electric Cloud Solution
	Electric Cloud Architecture
	Clustering Approach
	Virtualization
	Versioning File System
	Network Optimization
	File System Optimization
	Recursive Makes
	Recursive Makes, cont’d
	Compatibility
	Manageability
	Results: Open Source
	Results: Linux Kernel
	Telecom Equip. Vendor
	Enterprise Software Co.
	Electric Cloud			
	What about distcc?
	distcc vs. Electric Cloud
	Electric Make vs. Distcc
	Performance Limits
	Impact of 10-20x Speedup
	Conclusion
	More Information

