
Pyrit: PolYnomial Ring
Transforms

Jonathan DETCHART, Jérôme LACAN
ISAE-SUPAERO

FRANCE

How to accelerate MDS
Erasure Codes

1

Erasure codes for storage
D0

D1

•••

Dk-1

C0
•••

Cm-1

k storage areas (disks, files,…) are
encoded

to generate m additional storage areas.

reliability : a (n,k) code can tolerate m losses among n = k + m storage areas

1 0

D0

00

0 001

0 010

0 100

a dcb

e hgf

i lkj

D1

D2

D3

=*

D0

D1

D2

D3

C0

C1

C2

GT
Data

D0

D1

D2

D3

C0

C1

C2

* =
D0

D1

D2

D3

(sub G)-1

C0	=	a	*	D0	+	b	*	D1	+	c	*	D2	+	d	*	D3
C1	=	e	*	D0	+	f	*	D1	+	g	*	D2	+	h	*	D3

*	and	+	are	done	
in	a	finite	field 2

The Polynomial Ring Transform
As operations in a field are complex, we do operations into a ring

• Embedding: just consider a field element as a ring element (pad with 0)
• Parity: add a parity bit
• Sparsest representation: choose the sparsest ring element

We propose 3 methods to make the correspondance between a field and a ring:

Works when the finite field is defined by a polynomial with the following properties:
• AOP (All-One Polynomials). Ex: p(x) = x4 + x3 + x2 + x + 1 is an irreducible factor of (x5 + 1)

=> GF(16) becomes Ring(32)
• ESP (Equally Spaced Polynomials). Ex: p(x) = x6 + x3 + 1 is an irreducible factor of (x9 + 1)

=> GF(64) becomes Ring(512)

• We transform the elements of a field (as polynomials) into elements of a ring.
• In the field, operations are done modulo an irreducible polynomial.
• In the ring, operations are done modulo (xn + 1) => It is just a cyclic shift ! (xn = 1)

Operations to multiply a storage area by 5 (1 + x2) in GF(16): Same operations in Ring(32):

3

Optimal (10,5) Vandermonde generator matrix: from 5 sources,
we generate 5 additional repairs with 1 xor by source

Minimal density matrices: it is possible to generate matrices with only 1 xor per source !

Gain of 18% for the complexity
for a Cauchy matrix

4

Field VS Ring

• Low-density bit matrices by construction: reduce the number of coding operations
• Data organisation: the modulo is just a cyclic shift: the elements are only composed by cyclic diagonals: 
 • smaller representation in memory  
 • less branches in the code
 • unrolling is easy 
• Easy scheduling: thanks to the cyclic representation of the matrix elements

Thanks to the ring operations, we have:
The results

CPU: Intel i5-6500

5

