Pyrit: PolYnomial RIing
Transtorms

How to accelerate MDS
Frasure Codes

Jonathan DETCHART, Jérbme LACAN
ISAE-SUPAERO
FRANCE

Sa8

SUPAERO



Erasure codes for storage

k storage areas (disks, files,...) are
encoded
to generate m additional storage areas.

Data

a * Do+ b *D1 +c * Dy + d * D3 * and + are done

O 0O
= ®
[l [l



The Polynomial Ring Transform

As operations in a field are complex, we do operations into a ring

- We transform the elements of a field (as polynomials) into elements of a ring.
- In the field, operations are done modulo an irreducible polynomial.
» In the ring, operations are done modulo (x" + 1) => It is just a cyclic shift | (x" = 1)

Operations to multiply a storage area by 5 (1 + x2) In GF(16):E Same operations in Ring(32):

Works when the finite field is defined by a polynomial with the following properties:

« AOP (All-One Polynomials). Ex: p(x) = x* + x3 + X2 + X + 1 is an irreducible factor of (x> + 1)
=> GF(16) becomes Ring(32)

- ESP (Equally Spaced Polynomials). Ex: p(x) = x6 + x3 + 1 is an irreducible factor of (x° + 1)
=> GF(64) becomes Ring(512)

We propose 3 methods to make the correspondance between a field and a ring:
» Embedding: just consider a field element as a ring element (pad with 0)
» Parity: add a parity bit
» Sparsest representation: choose the sparsest ring element




Field VS Ring

(7,4) generator Cauchy matrix

elements are polynomials
of [F2% in a decimal
representation:
13 represents x3 + x2 + 1

xor-based field W Wing representation

Gain of 18% for the complexity

for a Cauchy matrix

Minimal density matrices: it is possible to generate matrices with only 1 xor per source !

Optimal (10,5) Vandermonde ge
we generate 5 additional re

nerator matrix; from 5 sources,

pairs with 1 xor by source



The results
Thanks to the ring operations, we have:

- Low-density bit matrices by construction: reduce the number of coding operations

- Data organisation: the modulo is just a cyclic shift: the elements are only composed by cyclic diagonals:
- smaller representation in memory

* less branches in the code
- unrolling is easy
- Easy scheduling: thanks to the cyclic representation of the matrix elements

(12,8) coding (60,40) coding

R 20 R 4
o 20 — o
O f O 3 M+
= 15 \’\ 3 N
a 8 2
v 10 S~ W R
Q0 Q0
= S 1
T 0 o
O O
O O

128 B 2 KB 32 KB 512 KB 8 MB 128 B 2 KB 32 KB 512 KB 8 MB

=Pyrit (encoding) Pyrit (decoding)=ISA-L (encoding)-ISA-L (decoding)
CPU: Intel i5-6500



