StreamBox: Modern Stream Processing on a Multicore Machine

Authors: 

Hongyu Miao and Heejin Park, Purdue ECE; Myeongjae Jeon and Gennady Pekhimenko, Microsoft Research; Kathryn S. McKinley, Google; Felix Xiaozhu Lin, Purdue ECE

Abstract: 

Stream analytics on real-time events has an insatiable demand for throughput and latency. Its performance on a single machine is central to meeting this demand, even in a distributed system. This paper presents a novel stream processing engine called StreamBox that exploits the parallelism and memory hierarchy of modern multicore hardware. StreamBox executes a pipeline of transforms over records that may arrive out-of-order. As records arrive, it groups the records into ordered epochs delineated by watermarks. A watermark guarantees no subsequent record’s event timestamp will precede it.

Our contribution is to produce and manage abundant parallelism by generalizing out-of-order record processing within each epoch to out-of-order epoch processing and by dynamically prioritizing epochs to optimize latency. We introduce a data structure called cascading containers, which dynamically manages concurrency and dependences among epochs in the transform pipeline. StreamBox creates sequential memory layout of records in epochs and steers them to optimize NUMA locality. On a 56-core machine, StreamBox processes records up to 38 GB/sec (38M Records/sec) with 50 ms latency.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {203223,
author = {Hongyu Miao and Heejin Park and Myeongjae Jeon and Gennady Pekhimenko and Kathryn S. McKinley and Felix Xiaozhu Lin},
title = {{StreamBox}: Modern Stream Processing on a Multicore Machine},
booktitle = {2017 USENIX Annual Technical Conference (USENIX ATC 17)},
year = {2017},
isbn = {978-1-931971-38-6},
address = {Santa Clara, CA},
pages = {617--629},
url = {https://www.usenix.org/conference/atc17/technical-sessions/presentation/miao},
publisher = {USENIX Association},
month = jul
}

Presentation Audio