OpenExpress: Fully Hardware Automated Open Research Framework for Future Fast NVMe Devices

Authors: 

Myoungsoo Jung, KAIST

Abstract: 

NVMe is widely used by diverse types of storage and non-volatile memories subsystems as a de-facto fast I/O communication interface. Industries secure their own intellectual property (IP) for high-speed NVMe controllers and explore challenges of software stack with future fast NVMe storage cards. Unfortunately, such NVMe controller IPs are often inaccessible to academia. The research community, however, requires an open-source hardware framework to build new storage stack and controllers for the fast NVMe devices.

In this work, we present OpenExpress, a fully hardware automated framework that has no software intervention to process concurrent NVMe requests while supporting scalable data submission, rich outstanding I/O command queues, and submission/completion queue management. OpenExpress is available to download and offers a maximum bandwidth of around 7GB/s without a silicon fabrication.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {254392,
author = {Myoungsoo Jung},
title = {{OpenExpress}: Fully Hardware Automated Open Research Framework for Future Fast {NVMe} Devices},
booktitle = {2020 USENIX Annual Technical Conference (USENIX ATC 20)},
year = {2020},
isbn = {978-1-939133-14-4},
pages = {649--656},
url = {https://www.usenix.org/conference/atc20/presentation/jung},
publisher = {USENIX Association},
month = jul
}

Presentation Video