MigrOS: Transparent Live-Migration Support for Containerised RDMA Applications

Authors: 

Maksym Planeta and Jan Bierbaum, TU Dresden; Leo Sahaya Daphne Antony, AMOLF; Torsten Hoefler, ETH Zürich; Hermann Härtig, TU Dresden

Abstract: 

RDMA networks offload packet processing onto specialised circuitry of the network interface controllers (NICs) and bypass the OS to improve network latency and bandwidth. As a consequence, the OS forfeits control over active RDMA connections and loses the possibility to migrate RDMA applications transparently. This paper presents MigrOS, an OS-level architecture for transparent live migration of containerised RDMA applications. MigrOS shows that a set of minimal changes to the RDMA communication protocol reenables live migration without interposing the critical path operations. Our approach requires no changes to the user applications and maintains backwards compatibility at all levels of the network stack. Overall, MigrOS can achieve up to 33% lower network latency in comparison to software-only techniques.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {273765,
author = {Maksym Planeta and Jan Bierbaum and Leo Sahaya Daphne Antony and Torsten Hoefler and Hermann H{\"a}rtig},
title = {{MigrOS}: Transparent {Live-Migration} Support for Containerised {RDMA} Applications},
booktitle = {2021 USENIX Annual Technical Conference (USENIX ATC 21)},
year = {2021},
isbn = {978-1-939133-23-6},
pages = {47--63},
url = {https://www.usenix.org/conference/atc21/presentation/planeta},
publisher = {USENIX Association},
month = jul
}

Presentation Video