Bing Tian, Haikun Liu, Zhuohui Duan, Xiaofei Liao, Hai Jin, and Yu Zhang, Huazhong University of Science and Technology
Approximate nearest neighbor search (ANNS) in high-dimensional vector spaces has become increasingly crucial in database and machine learning applications. Most previous ANNS algorithms require TB-scale memory to store indices of billion-scale datasets, making their deployment extremely expensive for high-performance search. The emerging SmartSSD technology offers an opportunity to achieve scalable ANNS via near data processing (NDP). However, there remain challenges to directly adopt existing ANNS algorithms on multiple SmartSSDs.
In this paper, we present SmartANNS, a SmartSSD-empowered billion-scale ANNS solution based on a hierarchical indexing methodology. We propose several novel designs to achieve near-linear scaling with multiple SmartSSDs. First, we propose a "host CPUs + SmartSSDs'' cooperative architecture incorporated with hierarchical indices to significantly reduce data accesses and computations on SmartSSDs. Second, we propose dynamic task scheduling based on optimized data layout to achieve both load balancing and data reusing for multiple SmartSSDs. Third, we further propose a learning-based shard pruning algorithm to eliminate unnecessary computations on SmartSSDs. We implement SmartANNS using Samsung’s commercial SmartSSDs. Experimental results show that SmartANNS can improve query per second (QPS) by up to 10.7× compared with the state-of-the-art SmartSSD-based ANNS solution—CSDANNS. Moreover, SmartANNS can achieve near-linear performance scalability for large-scale datasets using multiple SmartSSDs.
USENIX ATC '24 Open Access Sponsored by
King Abdullah University of Science and Technology (KAUST)
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Bing Tian and Haikun Liu and Zhuohui Duan and Xiaofei Liao and Hai Jin and Yu Zhang},
title = {Scalable Billion-point Approximate Nearest Neighbor Search Using {SmartSSDs}},
booktitle = {2024 USENIX Annual Technical Conference (USENIX ATC 24)},
year = {2024},
isbn = {978-1-939133-41-0},
address = {Santa Clara, CA},
pages = {1135--1150},
url = {https://www.usenix.org/conference/atc24/presentation/tian},
publisher = {USENIX Association},
month = jul
}