Kai Wu and Jie Ren, University of California, Merced; Ivy Peng, Lawrence Livermore National Laboratory; Dong Li, University of California, Merced
Failure-atomic transactions are a critical mechanism for accessing and manipulating data on persistent memory (PM) with crash consistency. We identify that small random writes in metadata modifications and locality-oblivious memory allocation in traditional PM transaction systems mismatch PM architecture. We present ArchTM, a PM transaction system based on two design principles: avoiding small writes and encouraging sequential writes. ArchTM is a variant of copy-on-write (CoW) system to reduce write traffic to PM. Unlike conventional CoW schemes, ArchTM reduces metadata modifications through a scalable lookup table on DRAM. ArchTM introduces an annotation mechanism to ensure crash consistency and a locality-aware data path in memory allocation to increases coalesable writes inside PM devices. We evaluate ArchTM against four state-of-the-art transaction systems (one in PMDK, Romulus, DudeTM, and one from Oracle. ArchTM outperforms the competitor systems by 58x, 5x, 3x and 7x on average, using micro-benchmarks and real-world workloads on real PM.
FAST '21 Open Access Sponsored by NetApp
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Kai Wu and Jie Ren and Ivy Peng and Dong Li},
title = {{ArchTM}: {Architecture-Aware}, High Performance Transaction for Persistent Memory},
booktitle = {19th USENIX Conference on File and Storage Technologies (FAST 21)},
year = {2021},
isbn = {978-1-939133-20-5},
pages = {141--153},
url = {https://www.usenix.org/conference/fast21/presentation/wu-kai},
publisher = {USENIX Association},
month = feb
}