sponsors
usenix conference policies
Adaptive Information Security in Body Sensor-Actuator Networks
Krishna K. Venkatasubramanian and Craig A. Shue, Worcester Polytechnic Institute
A Body Sensor Actuator Network (BSAN) consists of a set of sensing and actuating devices deployed on a person (user) typically for health management purposes. Securing the information exchanged within a BSAN from unauthorized tampering is essential to ensure that such systems are safe, and thus do no harm, to the people using them. Current solutions for enabling information security in BSANs impose considerable overhead on the nodes. In order to make security viable in BSANs, one needs to move away from this one-size-fits-all solution and take a more adaptive approach where the level of security provided matches the level of threat present. In this regard, we present an adaptive information security scheme for BSANs that uses honeypots to measure the current threat context, by interacting with the adversaries trying to undermine user safety. The measurements made by the honeypot can then be used to determine the appropriate balance for the tradeoff between the level of security and associated overhead at any given time. This paper provides an overview of our approach and the associated research challenges in successfully implementing it.
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Krishna K. Venkatasubramanian and Craig A. Shue},
title = {Adaptive Information Security in Body {Sensor-Actuator} Networks},
year = {2014},
address = {San Diego, CA},
publisher = {USENIX Association},
month = aug
}
connect with us