Shripad Nadgowda, Sahil Suneja, and Canturk Isci, IBM Research
Application runtimes are undergoing a fundamental transformation in the cloud, from general-purpose op- erating systems (OSes) in virtual machines (VMs) to lightweight, minimal OSes in microcontainers. On one hand, such transformation is helping reduce application footprint in the cloud to increase agility, density and to minimize attack surface. On the other hand it makes it challenging to implement system and application man- agement tasks. Inspired from the on-demand Function as a Service (FaaS) model in serverless computing, in RECap we are designing a cloud-native solution to deliver core systems and application management tasks through specially-managed Capsule containers. Capsule containers are dynamically attached to the running containers for the duration of their implemented function and are safely removed from application context afterwards. More generally, RECap framework allows us to design disaggregated on-demand managed service delivery for containers in the cloud. In this paper, we describe the motivation and the emerging opportunity for RECap in the cloud. We discuss its core design principles, performance, security and manageability trade-offs. We present current design of RECap for the Kubernetes platform.
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Shripad Nadgowda and Sahil Suneja and Canturk Isci},
title = {{RECap}: {Run-Escape} Capsule for On-demand Managed Service Delivery in the Cloud},
booktitle = {10th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 18)},
year = {2018},
address = {Boston, MA},
url = {https://www.usenix.org/conference/hotcloud18/presentation/nadgowda},
publisher = {USENIX Association},
month = jul
}