Tintenfisch: File System Namespace Schemas and Generators

Authors: 

Michael A. Sevilla, Reza Nasirigerdeh, Carlos Maltzahn, Jeff LeFevre, Noah Watkins, and Peter Alvaro, University of California, Santa Cruz; Margaret Lawson and Jay Lofstead, Sandia National Laboratories; Jim Pivarski, Princeton University

Abstract: 

The file system metadata service is the scalability bottleneck for many of today’s workloads. Common approaches for attacking this "metadata scaling wall" include: caching inodes on clients and servers, caching parent inodes for path traversal, and dynamic caching policies that exploit workload locality. These caches reduce the number of remote procedure calls (RPCs) but the effectiveness is dependent on the overhead of maintaining cache coherence and the administrator’s ability to select the best cache size for the given workloads. Recent work reduces the number of metadata RPCs to 1 without using a cache at all, by letting clients "decouple" the subtrees from the global namespace so that they can do metadata operations locally. Even with this technique, we show that file system metadata is still a bottleneck because namespaces for today’s workloads can be very large. The size is problematic for reads because metadata needs to be transferred and materialized. The management techniques for file system metadata assume that namespaces have no structure but we observe that this is not the case for all workloads. We propose Tintenfisch, a file system that allows users to succinctly express the structure of the metadata they intend to create. If a user can express the structure of the namespace, Tintenfisch clients and servers can (1) compact metadata, (2) modify large namespaces more quickly, and (3) generate only relevant parts of the namespace. This reduces network traffic, storage footprints, and the number of overall metadata operations needed to complete a job.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {216898,
author = {Michael A. Sevilla and Reza Nasirigerdeh and Carlos Maltzahn and Jeff LeFevre and Noah Watkins and Peter Alvaro and Margaret Lawson and Jay Lofstead and Jim Pivarski},
title = {Tintenfisch: File System Namespace Schemas and Generators},
booktitle = {10th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 18)},
year = {2018},
address = {Boston, MA},
url = {https://www.usenix.org/conference/hotstorage18/presentation/sevilla},
publisher = {USENIX Association},
month = jul
}