usenix conference policies
You are here
Data Reduction for the Scalable Automated Analysis of Distributed Darknet Traffic
Threats to the privacy of users and to the availability of Internet infrastructure are evolving at a tremendous rate. To characterize these emerging threats, researchers must effectively balance monitoring the large number of hosts needed to quickly build confidence in new attacks, while still preserving the detail required to differentiate these attacks. One class of techniques that attempts to achieve this balance involves hybrid systems that combine the scalable monitoring of unused address blocks (or darknets) with forensic honeypots (or honeyfarms). In this paper we examine the properties of individual and distributed darknets to determine the effectiveness of building scalable hybrid systems. We show that individual darknets are dominated by a small number of sources repeating the same actions. This enables source-based techniques to be effective at reducing the number of connections to be evaluated by over 90%. We demonstrate that the dominance of locally targeted attack behavior and the limited life of random scanning hosts result in few of these sources being repeated across darknets. To achieve reductions beyond source-based approaches, we look to source-distribution based methods and expand them to include notions of local and global behavior. We show that this approach is effective at reducing the number of events by deploying it in 30 production networks during early 2005. Each of the identified events during this period represented a major globally-scoped attack including the WINS vulnerability scanning, Veritas Backup Agent vulnerability scanning, and the MySQL Worm.
author = {Michael Bailey and Evan Cooke and Farnam Jahanian and Niels Provos and Karl Rosaen and David Watson},
title = {Data Reduction for the Scalable Automated Analysis of Distributed Darknet Traffic},
booktitle = {Internet Measurement Conference 2005 (IMC 05)},
year = {2005},
address = {Berkeley, CA},
url = {https://www.usenix.org/conference/imc-05/data-reduction-scalable-automated-analysis-distributed-darknet-traffic},
publisher = {USENIX Association},
month = oct
}
connect with us