Prateesh Goyal, MIT CSAIL; Preey Shah, IIT Bombay; Kevin Zhao, University of Washington; Georgios Nikolaidis, Intel, Barefoot Switch Division; Mohammad Alizadeh, MIT CSAIL; Thomas E. Anderson, University of Washington
Effective congestion control for data center networks is becoming increasingly challenging with a growing amount of latency-sensitive traffic, much fatter links, and extremely bursty traffic. Widely deployed algorithms, such as DCTCP and DCQCN, are still far from optimal in many plausible scenarios, particularly for tail latency. Many operators compensate by running their networks at low average utilization, dramatically increasing costs.
In this paper, we argue that we have reached the practical limits of end-to-end congestion control. Instead, we propose, implement, and evaluate a new congestion control architecture called Backpressure Flow Control (BFC). BFC provides per-hop per-flow flow control, but with bounded state, constant-time switch operations, and careful use of buffers and queues. We demonstrate BFC’s feasibility by implementing it on Tofino2, a state-of-the-art P4-based programmable hardware switch. In simulation, we show that BFC achieves near optimal throughput and tail latency behavior even under challenging conditions such as high network load and incast cross traffic. Compared to deployed end-to-end schemes, BFC achieves 2.3 - 60× lower tail latency for short flows and 1.6 - 5× better average completion time for long flows.
NSDI '22 Open Access Sponsored by
King Abdullah University of Science and Technology (KAUST)
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Prateesh Goyal and Preey Shah and Kevin Zhao and Georgios Nikolaidis and Mohammad Alizadeh and Thomas E. Anderson},
title = {Backpressure Flow Control},
booktitle = {19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22)},
year = {2022},
isbn = {978-1-939133-27-4},
address = {Renton, WA},
pages = {779--805},
url = {https://www.usenix.org/conference/nsdi22/presentation/goyal},
publisher = {USENIX Association},
month = apr
}