Brain-on-Switch: Towards Advanced Intelligent Network Data Plane via NN-Driven Traffic Analysis at Line-Speed

Authors: 

Jinzhu Yan and Haotian Xu, Tsinghua University; Zhuotao Liu, Qi Li, Ke Xu, Mingwei Xu, and Jianping Wu, Tsinghua University and Zhongguancun Laboratory

Abstract: 

The emerging programmable networks sparked significant research on Intelligent Network Data Plane (INDP), which achieves learning-based traffic analysis at line-speed. Prior art in INDP focus on deploying tree/forest models on the data plane. We observe a fundamental limitation in tree-based INDP approaches: although it is possible to represent even larger tree/forest tables on the data plane, the flow features that are computable on the data plane are fundamentally limited by hardware constraints. In this paper, we present BoS to push the boundaries of INDP by enabling Neural Network (NN) driven traffic analysis at line-speed. Many types of NNs (such as Recurrent Neural Network (RNN), and transformers) that are designed to work with sequential data have advantages over tree-based models, because they can take raw network data as input without complex feature computations on the fly. However, the challenge is significant: the recurrent computation scheme used in RNN inference is fundamentally different from the match-action paradigm used on the network data plane. BoS addresses this challenge by (i) designing a novel data plane friendly RNN architecture that can execute unlimited RNN time steps with limited data plane stages, effectively achieving line-speed RNN inference; and (ii) complementing the on-switch RNN model with an off-switch transformer-based traffic analysis module to further boost the overall performance. We implement a prototype of BoS using a P4 programmable switch as our data plane, and extensively evaluate it over multiple traffic analysis tasks. The results show that BoS outperforms state-of-the-art in both analysis accuracy and scalability.

NSDI '24 Open Access Sponsored by
King Abdullah University of Science and Technology (KAUST)

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {295515,
author = {Jinzhu Yan and Haotian Xu and Zhuotao Liu and Qi Li and Ke Xu and Mingwei Xu and Jianping Wu},
title = {{Brain-on-Switch}: Towards Advanced Intelligent Network Data Plane via {NN-Driven} Traffic Analysis at {Line-Speed}},
booktitle = {21st USENIX Symposium on Networked Systems Design and Implementation (NSDI 24)},
year = {2024},
isbn = {978-1-939133-39-7},
address = {Santa Clara, CA},
pages = {419--440},
url = {https://www.usenix.org/conference/nsdi24/presentation/yan},
publisher = {USENIX Association},
month = apr
}