Hao Yin, University of Washington; Murali Ramanujam, Princeton University; Joe Schaefer, Stan Adermann, Srihari Narlanka, and Perry Lea, Microsoft; Ravi Netravali, Princeton University; Krishna Chintalapudi, Microsoft Research
The wireless channel between gaming console and accessories e.g. controllers and headsets, experiences extremely rapid variations due to abrupt head and hand movements amidst an exciting game. In the absence of prior studies on wireless packet losses for console gaming, through extensive evaluations and user studies, we find that state-of-the-art rate adaptation schemes, unable to keep up with these rapid changes, experience packet loss rates of 2-10% while loss rates that are 10× lower (0.1-0.5%) are required to ensure a high quality gaming experience. We present ADR-X, an ANN-based contextual multi-armed bandit rate adaptation technique that continuously predicts and tracks the channel and picks appropriate data rates. A key challenge for ADR-X is that it must run on power and compute constrained embedded devices under realtime constraints. ADR-X addresses this challenge by meticulously crafting an ANN that leverages existing communication theory results to incorporate domain knowledge. This allows ADR-X to achieve 10× lower packet losses than existing schemes while also running 100× faster than state-of-the-art reinforcement learning schemes, making it suitable for deployment on embedded gaming devices.
NSDI '24 Open Access Sponsored by
King Abdullah University of Science and Technology (KAUST)
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Hao Yin and Murali Ramanujam and Joe Schaefer and Stan Adermann and Srihari Narlanka and Perry Lea and Ravi Netravali and Krishna Chintalapudi},
title = {{ADR-X}: {ANN-Assisted} Wireless Link Rate Adaptation for {Compute-Constrained} Embedded Gaming Devices},
booktitle = {21st USENIX Symposium on Networked Systems Design and Implementation (NSDI 24)},
year = {2024},
isbn = {978-1-939133-39-7},
address = {Santa Clara, CA},
pages = {1331--1349},
url = {https://www.usenix.org/conference/nsdi24/presentation/yin},
publisher = {USENIX Association},
month = apr
}