Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K. Ports, University of Washington
Distributed applications use replication, implemented by protocols like Paxos, to ensure data availability and transparently mask server failures. This paper presents a new approach to achieving replication in the data center without the performance cost of traditional methods. Our work carefully divides replication responsibility between the network and protocol layers. The network orders requests but does not ensure reliable delivery – using a new primitive we call ordered unreliable multicast (OUM). Implementing this primitive can be achieved with near-zero-cost in the data center. Our new replication protocol, Network- Ordered Paxos (NOPaxos), exploits network ordering to provide strongly consistent replication without coordination. The resulting system not only outperforms both latency- and throughput-optimized protocols on their respective metrics, but also yields throughput within 2% and latency within 16 μs of an unreplicated system – providing replication without the performance cost.
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Jialin Li and Ellis Michael and Naveen Kr. Sharma and Adriana Szekeres and Dan R. K. Ports},
title = {Just Say {NO} to Paxos Overhead: Replacing Consensus with Network Ordering},
booktitle = {12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16)},
year = {2016},
isbn = {978-1-931971-33-1},
address = {Savannah, GA},
pages = {467--483},
url = {https://www.usenix.org/conference/osdi16/technical-sessions/presentation/li},
publisher = {USENIX Association},
month = nov
}