Darya Kaviani and Sijun Tan, UC Berkeley; Pravein Govindan Kannan, IBM Research; Raluca Ada Popa, UC Berkeley
Recent years have exhibited an increase in applications that distribute trust across n servers to protect user data from a central point of attack. However, these deployments remain limited due to a core obstacle: establishing n distinct trust domains. An application provider, a single trust domain, cannot directly deploy multiple trust domains. As a result, application providers forge business relationships to enlist third-parties as trust domains, which is a manual, lengthy, and expensive process, inaccessible to many application developers.
We introduce the on-demand distributed-trust architecture that enables an application provider to deploy distributed trust automatically and immediately without controlling the other trust domains. The insight lies in reversing the deployment method such that each user's client drives deployment instead of the application provider. While at a first glance, this approach appears infeasible due to cost, performance, and resource abuse concerns, our system Flock resolves these challenges. We implement and evaluate Flock on 3 major cloud providers and 8 distributed-trust applications. On average, Flock achieves 1.05x the latency and 0.68-2.27x the cloud cost of a traditional distributed-trust deployment, without reliance on third-party relationships.
OSDI '24 Open Access Sponsored by
King Abdullah University of Science and Technology (KAUST)
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Darya Kaviani and Sijun Tan and Pravein Govindan Kannan and Raluca Ada Popa},
title = {Flock: A Framework for Deploying {On-Demand} Distributed Trust},
booktitle = {18th USENIX Symposium on Operating Systems Design and Implementation (OSDI 24)},
year = {2024},
isbn = {978-1-939133-40-3},
address = {Santa Clara, CA},
pages = {721--743},
url = {https://www.usenix.org/conference/osdi24/presentation/kaviani},
publisher = {USENIX Association},
month = jul
}