Chih-Yuan Lin and Simin Nadjm-Tehrani, Linköping Universitet
Supervisory Control and Data Acquisition (SCADA) systems operate critical infrastructures in our modern society despite their vulnerability to attacks and misuse. There are several anomaly detection systems based on the cycles of polling mechanisms used in SCADA systems, but the feasibility of anomaly detection systems based on non-polling traffic, so called spontaneous events, is not well-studied. This paper presents a novel approach to modeling the timing characteristics of spontaneous events in an IEC-60870-5-104 network and exploits the model for anomaly detection. The system is tested with a dataset from a real power utility with injected timing effects from two attack scenarios. One attack causes timing anomalies due to persistent malfunctioning in the field devices, and the other generates intermittent anomalies caused by malware on the field devices, which is considered as stealthy. The detection accuracy and timing performance are promising for all the experiments with persistent anomalies. With intermittent anomalies, we found that our approach is effective for anomalies in low-volume traffic or attacks lasting over 1 hour.
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Chih-Yuan Lin and Simin Nadjm-Tehrani},
title = {Timing Patterns and Correlations in Spontaneous {SCADA} Traffic for Anomaly Detection},
booktitle = {22nd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019)},
year = {2019},
isbn = {978-1-939133-07-6},
address = {Chaoyang District, Beijing},
pages = {73--88},
url = {https://www.usenix.org/conference/raid2019/presentation/lin},
publisher = {USENIX Association},
month = sep
}