Get more
Help Promote graphics!
Fingerprinting Electronic Control Units for Vehicle Intrusion Detection
LISA: Where systems engineering and operations professionals share real-world knowledge about designing, building, and maintaining the critical systems of our interconnected world.
The LISA conference has long served as the annual vendor-neutral meeting place for the wider system administration community. The LISA14 program recognized the overlap and differences between traditional and modern IT operations and engineering, and developed a highly-curated program around 5 key topics: Systems Engineering, Security, Culture, DevOps, and Monitoring/Metrics. The program included 22 half- and full-day training sessions; 10 workshops; and a conference program consisting of 50 invited talks, panels, refereed paper presentations, and mini-tutorials.
Kyong-Tak Cho and Kang G. Shin, University of Michigan
As more software modules and external interfaces are getting added on vehicles, new attacks and vulnerabilities are emerging. Researchers have demonstrated how to compromise in-vehicle Electronic Control Units (ECUs) and control the vehicle maneuver. To counter these vulnerabilities, various types of defense mechanisms have been proposed, but they have not been able to meet the need of strong protection for safety-critical ECUs against in-vehicle network attacks. To mitigate this deficiency, we propose an anomaly-based intrusion detection system (IDS), called Clock-based IDS (CIDS). It measures and then exploits the intervals of periodic in-vehicle messages for fingerprinting ECUs. The thusderived fingerprints are then used for constructing a baseline of ECUs’ clock behaviors with the Recursive Least Squares (RLS) algorithm. Based on this baseline, CIDS uses Cumulative Sum (CUSUM) to detect any abnormal shifts in the identification errors — a clear sign of intrusion. This allows quick identification of in-vehicle network intrusions with a low false-positive rate of 0.055%. Unlike state-of-the-art IDSs, if an attack is detected, CIDS’s fingerprinting of ECUs also facilitates a rootcause analysis; identifying which ECU mounted the attack. Our experiments on a CAN bus prototype and on real vehicles have shown CIDS to be able to detect a wide range of in-vehicle network attacks.
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Kyong-Tak Cho and Kang G. Shin},
title = {Fingerprinting Electronic Control Units for Vehicle Intrusion Detection},
booktitle = {25th USENIX Security Symposium (USENIX Security 16)},
year = {2016},
isbn = {978-1-931971-32-4},
address = {Austin, TX},
pages = {911--927},
url = {https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/cho},
publisher = {USENIX Association},
month = aug
}
connect with us