You are here
Enhancing Bitcoin Security and Performance with Strong Consistency via Collective Signing
Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser, and Bryan Ford, École Polytechnique Fédérale de Lausanne (EPFL)
While showing great promise, Bitcoin requires users to wait tens of minutes for transactions to commit, and even then, offering only probabilistic guarantees. This paper introduces ByzCoin, a novel Byzantine consensus protocol that leverages scalable collective signing to commit Bitcoin transactions irreversibly within seconds. ByzCoin achieves Byzantine consensus while preserving Bitcoin’s open membership by dynamically forming hash power-proportionate consensus groups that represent recently-successful block miners. ByzCoin employs communication trees to optimize transaction commitment and verification under normal operation while guaranteeing safety and liveness under Byzantine faults, up to a near-optimal tolerance of f faulty group members among 3f +2 total. ByzCoin mitigates double spending and selfish mining attacks by producing collectively signed transaction blocks within one minute of transaction submission. Tree-structured communication further reduces this latency to less than 30 seconds. Due to these optimizations, ByzCoin achieves a throughput higher than Paypal currently handles, with a confirmation latency of 15-20 seconds.
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Eleftherios Kokoris Kogias and Philipp Jovanovic and Nicolas Gailly and Ismail Khoffi and Linus Gasser and Bryan Ford},
title = {Enhancing Bitcoin Security and Performance with Strong Consistency via Collective Signing},
booktitle = {25th USENIX Security Symposium (USENIX Security 16)},
year = {2016},
isbn = {978-1-931971-32-4},
address = {Austin, TX},
pages = {279--296},
url = {https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias},
publisher = {USENIX Association},
month = aug
}
connect with us