SHARD: Fine-Grained Kernel Specialization with Context-Aware Hardening

Authors: 

Muhammad Abubakar, Adil Ahmad, Pedro Fonseca, and Dongyan Xu, Purdue University

Abstract: 

With growing hardware complexity and ever-evolving user requirements, the kernel is increasingly bloated which increases its attack surface. Despite its large size, for specific applications and workloads, only a small subset of the kernel code is actually required. Kernel specialization approaches exploit this observation to either harden the kernel or restrict access to its code (debloating) on a per-application basis. However, existing approaches suffer from coarse specialization granularity and lack strict enforcement which limits their effectiveness.

This paper presents SHARD, a practical framework to enforce fine-grain kernel specialization. SHARD specializes at both the application and system call levels to significantly restrict the kernel code exposed to attackers. Furthermore, SHARD introduces context-aware hardening to dynamically enable code hardening during suspicious execution contexts. SHARD implements an instance of a context-aware hardening scheme using control-flow integrity (CFI), which provides near-native performance for non-hardened executions and strong security guarantees. Our analysis of the kernel attack surface reduction with SHARD as well as concrete attacks shows that SHARD exposes 181× less kernel code than the native kernel, an order of magnitude better than existing work, and prevents 90% of the evaluated attacks. Our evaluation shows that the average performance overhead ofSHARD on real-world applications is moderate — 10% to 36% on NGINX, 3% to 10% on Redis, and 0% to 2.7% on the SPEC CPU 2006 benchmarks.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {263878,
author = {Muhammad Abubakar and Adil Ahmad and Pedro Fonseca and Dongyan Xu},
title = {{SHARD}: {Fine-Grained} Kernel Specialization with {Context-Aware} Hardening},
booktitle = {30th USENIX Security Symposium (USENIX Security 21)},
year = {2021},
isbn = {978-1-939133-24-3},
pages = {2435--2452},
url = {https://www.usenix.org/conference/usenixsecurity21/presentation/abubakar},
publisher = {USENIX Association},
month = aug
}

Presentation Video