Riccardo Paccagnella, Licheng Luo, and Christopher W. Fletcher, University of Illinois at Urbana-Champaign
We introduce the first microarchitectural side channel attacks that leverage contention on the CPU ring interconnect. There are two challenges that make it uniquely difficult to exploit this channel. First, little is known about the ring interconnect's functioning and architecture. Second, information that can be learned by an attacker through ring contention is noisy by nature and has coarse spatial granularity. To address the first challenge, we perform a thorough reverse engineering of the sophisticated protocols that handle communication on the ring interconnect. With this knowledge, we build a cross-core covert channel over the ring interconnect with a capacity of over 4 Mbps from a single thread, the largest to date for a cross-core channel not relying on shared memory. To address the second challenge, we leverage the fine-grained temporal patterns of ring contention to infer a victim program's secrets. We demonstrate our attack by extracting key bits from vulnerable EdDSA and RSA implementations, as well as inferring the precise timing of keystrokes typed by a victim user.
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Riccardo Paccagnella and Licheng Luo and Christopher W. Fletcher},
title = {Lord of the Ring(s): Side Channel Attacks on the {CPU} {On-Chip} Ring Interconnect Are Practical},
booktitle = {30th USENIX Security Symposium (USENIX Security 21)},
year = {2021},
isbn = {978-1-939133-24-3},
pages = {645--662},
url = {https://www.usenix.org/conference/usenixsecurity21/presentation/paccagnella},
publisher = {USENIX Association},
month = aug
}