ÆPIC Leak: Architecturally Leaking Uninitialized Data from the Microarchitecture

Authors: 

Pietro Borrello, Sapienza University of Rome; Andreas Kogler and Martin Schwarzl, Graz University of Technology; Moritz Lipp, Amazon Web Services; Daniel Gruss, Graz University of Technology; Michael Schwarz, CISPA Helmholtz Center for Information Security

Abstract: 

CPU vulnerabilities undermine the security guarantees provided by software- and hardware-security improvements. While the discovery of transient-execution attacks increased the interest in CPU vulnerabilities on a microarchitectural level, architectural CPU vulnerabilities are still understudied.

In this paper, we systematically analyze existing CPU vulnerabilities showing that CPUs suffer from vulnerabilities whose root causes match with those in complex software. We show that transient-execution attacks and architectural vulnerabilities often arise from the same type of bug and identify the blank spots. Investigating the blank spots, we focus on architecturally improperly initialized data locations.

We discover ÆPIC Leak, the first architectural CPU bug that leaks stale data from the microarchitecture without using a side channel. ÆPIC Leak works on all recent Sunny- Cove-based Intel CPUs (i.e., Ice Lake and Alder Lake). It architecturally leaks stale data incorrectly returned by reading undefined APIC-register ranges. ÆPIC Leak samples data transferred between the L2 and last-level cache, including SGX enclave data, from the superqueue. We target data in use, e.g., register values and memory loads, as well as data at rest, e.g., SGX-enclave data pages. Our end-to-end attack extracts AES-NI, RSA, and even the Intel SGX attestation keys from enclaves within a few seconds. We discuss mitigations and conclude that the only short-term mitigations for ÆPIC Leak are to disable APIC MMIO or not rely on SGX.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {281354,
author = {Pietro Borrello and Andreas Kogler and Martin Schwarzl and Moritz Lipp and Daniel Gruss and Michael Schwarz},
title = {{{\AE}PIC} Leak: Architecturally Leaking Uninitialized Data from the Microarchitecture},
booktitle = {31st USENIX Security Symposium (USENIX Security 22)},
year = {2022},
isbn = {978-1-939133-31-1},
address = {Boston, MA},
pages = {3917--3934},
url = {https://www.usenix.org/conference/usenixsecurity22/presentation/borrello},
publisher = {USENIX Association},
month = aug
}

Presentation Video