Anrin Chakraborti, Duke University; Giulia Fanti, Carnegie Mellon University; Michael K. Reiter, Duke University
Private set intersection (PSI) allows two mutually untrusting parties to compute an intersection of their sets, without revealing information about items that are not in the intersection. This work introduces a PSI variant called distance-aware PSI (DA-PSI) for sets whose elements lie in a metric space. DAPSI returns pairs of items that are within a specified distance threshold of each other. This paper puts forward DA-PSI constructions for two metric spaces: (i) Minkowski distance of order 1 over the set of integers (i.e., for integers a and b, their distance is |a−b|); and (ii) Hamming distance over the set of binary strings of length ℓ. In the Minkowski DA-PSI protocol, the communication complexity scales logarithmically in the distance threshold and linearly in the set size. In the Hamming DA-PSI protocol, the communication volume scales quadratically in the distance threshold and is independent of the dimensionality of string length ℓ. Experimental results with real applications confirm that DA-PSI provides more effective matching at lower cost than naïve solutions.
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Anrin Chakraborti and Giulia Fanti and Michael K. Reiter},
title = {{Distance-Aware} Private Set Intersection},
booktitle = {32nd USENIX Security Symposium (USENIX Security 23)},
year = {2023},
isbn = {978-1-939133-37-3},
address = {Anaheim, CA},
pages = {319--336},
url = {https://www.usenix.org/conference/usenixsecurity23/presentation/chakraborti-intersection},
publisher = {USENIX Association},
month = aug
}