Fuzz The Power: Dual-role State Guided Black-box Fuzzing for USB Power Delivery

Authors: 

Kyungtae Kim and Sungwoo Kim, Purdue University; Kevin R. B. Butler, University of Florida; Antonio Bianchi, Rick Kennell, and Dave (Jing) Tian, Purdue University

Abstract: 

USB Power Delivery (USBPD) is a state-of-the-art charging protocol for advanced power supply. Thanks to its high volume of power supply, it has been widely adopted by consumer devices, such as smartphones and laptops, and has become the de facto USB charging standard in both EU and North America. Due to the low-level nature of charging and the complexity of the protocol, USBPD is often implemented as proprietary firmware running on a dedicated microcontroller unit (MCU) with a USBPD physical layer. Bugs within these implementations can not only lead to safety issues, e.g., over-charging, but also cause security issues, such as allowing attackers to reflash USBPD firmware.

This paper proposes FUZZPD, the first black-box fuzzing technique with dual-role state guidance targeting off-the-shelf USBPD devices with closed-source USBPD firmware. FUZZPD only requires a physical USB Type-C connection to operate in a plug-n-fuzz fashion. To facilitate the black-box fuzzing of USBPD firmware, FUZZPD manually creates a dual-role state machine from the USBPD specification, which enables both state coverage and transitions from fuzzing inputs. FUZZPD further provides a multi-level mutation strategy, allowing for fine-grained state-aware fuzzing with intra- and inter-state mutations. We implement FUZZPD using a Chromebook as the fuzzing host and evaluate it against 12 USBPD mobile devices from 7 different vendors, 7 USB hubs from 7 different vendors, and 5 chargers from 5 different vendors. FUZZPD has found 15 unique bugs, 9 of which have been confirmed by the corresponding vendors. We additionally conduct a comparison between FUZZPD and multiple state-of-the-art black-box fuzzing techniques, demonstrating that FUZZPD achieves code coverage that is 40% to 3x higher than other solutions. We then compare FUZZPD with the USBPD compliance test suite from USBIF and show that FUZZPD can find 7 more bugs with 2x higher code coverage. FUZZPD is the first step towards secure and trustworthy USB charging.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {290985,
author = {Kyungtae Kim and Sungwoo Kim and Kevin R. B. Butler and Antonio Bianchi and Rick Kennell and Dave (Jing) Tian},
title = {Fuzz The Power: Dual-role State Guided Black-box Fuzzing for {USB} Power Delivery},
booktitle = {32nd USENIX Security Symposium (USENIX Security 23)},
year = {2023},
isbn = {978-1-939133-37-3},
address = {Anaheim, CA},
pages = {5845--5861},
url = {https://www.usenix.org/conference/usenixsecurity23/presentation/kim-kyungtae},
publisher = {USENIX Association},
month = aug
}

Presentation Video