Matteo Scarlata and Matilda Backendal, ETH Zurich; Miro Haller, UC San Diego
Nair and Song (USENIX 2023) introduce the concept of a Multi-Factor Key Derivation Function (MFKDF), along with constructions and a security analysis. MFKDF integrates dynamic authentication factors, such as HOTP and hardware tokens, into password-based key derivation. The aim is to improve the security of password-derived keys, which can then be used for encryption or as an alternative to multi-factor authentication. The authors claim an exponential security improvement compared to traditional password-based key derivation functions (PBKDF).
We show that the MFKDF constructions proposed by Nair and Song fall short of the stated security goals. Underspecified cryptographic primitives and the lack of integrity of the MFKDF state lead to several attacks, ranging from full key recovery when an HOTP factor is compromised, to bypassing factors entirely or severely reducing their entropy. We reflect on the different threat models of key-derivation and authentication, and conclude that MFKDF is always weaker than plain PBKDF and multi-factor authentication in each setting.
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Matteo Scarlata and Matilda Backendal and Miro Haller},
title = {{MFKDF}: Multiple Factors Knocked Down Flat},
booktitle = {33rd USENIX Security Symposium (USENIX Security 24)},
year = {2024},
isbn = {978-1-939133-44-1},
address = {Philadelphia, PA},
pages = {4301--4318},
url = {https://www.usenix.org/conference/usenixsecurity24/presentation/scarlata},
publisher = {USENIX Association},
month = aug
}