
USENIX Association

Proceedings of
FAST ’03:

2nd USENIX Conference on
File and Storage Technologies

San Francisco, CA, USA
March 31–April 2, 2003

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 131

Façade: virtual storage devices with performance guarantees

Christopher R. Lumb� Arif Merchant† Guillermo A. Alvarez‡

Hewlett-Packard Laboratories

Abstract

High-end storage systems, such as those in large
data centers, must service multiple independent
workloads. Workloads often require predictable
quality of service, despite the fact that they have to
compete with other rapidly-changing workloads for
access to common storage resources. We present a
novel approach to providing performance guaran-
tees in this highly-volatile scenario, in an efficient
and cost-effective way. Façade, a virtual store con-
troller, sits between hosts and storage devices in
the network, and throttles individual I/O requests
from multiple clients so that devices do not saturate.
We implemented a prototype, and evaluated it using
real workloads on an enterprise storage system. We
also instantiated it to the particular case of emu-
lating commercial disk arrays. Our results show
that Façade satisfies performance objectives while
making efficient use of the storage resources—even
in the presence of of failures and bursty workloads
with stringent performance requirements.

1 Introduction

Driven by rapidly increasing requirements, stor-
age systems are getting larger and more complex
than ever before. The availability of fast, switched
storage fabrics and large disk arrays has enabled the

�Current address: Carnegie Mellon University,
Hamerschlag Hall, Pittsburgh, PA 15213, USA, val-
heru@ece.cmu.edu

†Current address: 1501 Page Mill Rd., MS 1134, HP Lab-
oratories, Palo Alto, CA 94304, USA. arif@hpl.hp.com

‡Current address: IBM Almaden Research Center,
650 Harry Road, San Jose, CA 95120, USA., al-
varezg@almaden.ibm.com

creation of data centers comprising tens of large ar-
rays with thousands of logical volumes and file sys-
tems, for total capacities of hundreds of terabytes
and aggregate transfer rates of tens to hundreds of
GB/s.

Such a consolidated data center typically serves
the storage needs of the organization it belongs
to, or even of multiple organizations. For exam-
ple, companies that outsource their data storage and
management contract the services of a Storage Ser-
vice Provider (SSP); large organizations may also
follow this model internally, to satisfy the require-
ments of separate divisions. The SSP allocates stor-
age on its own disk arrays and makes it available
to the customer over a network. Because the SSP
serves multiple customers, it can do so more effi-
ciently than a single customer—who may lack the
space, time, money and expertise to build and main-
tain its own storage infrastructure. But this strength
of the SSP can also be its bane: independent work-
loads compete for storage resources such as cache
space, disk, arm, bus, and network bandwidth, and
controller cycles.

A customer’s contract with an SSP frequently in-
cludes a Service Level Agreement that combines a
Service Level Objective (SLO) specifying the ca-
pacity, availability and performance requirements
that the provided storage will meet, plus the finan-
cial incentives and penalties for meeting or failing
to meet the SLO. We concentrate on the problem
of providing performance guarantees. A primary
requirement is performance isolation: the perfor-
mance experienced by the workload from a given
customer must not suffer because of variations on
the workloads from other customers. Additional re-
quirements may be imposed by customers moving
from internally-managed storage to an SSP, or from



2nd USENIX Conference on File and Storage Technologies USENIX Association132

one SSP to another: for example, “My application
runs well on an XP-1024 array; I want performance
similar to this.”

Traditional techniques for providing guarantees
in the networking domain do not readily apply to
storage, and adaptation at the application level is
extremely rare [24]. The storage system is therefore
left with the task of apportioning its resources with
very little knowledge of the highly-variable work-
loads, and subject to constraints implied by proto-
cols originally designed to provide best-effort ser-
vice. One approach commonly followed to ensure
performance isolation is to overprovision to the
point that performance is no longer an issue. The
resulting system can easily be twice as expensive
as a correctly-designed system [1, 20]—a substan-
tial difference for hardware and management costs
in the order of millions of dollars. Another alter-
native is to assign separate physical resources (e.g.,
separate arrays) to different customers. This inflex-
ible solution is impractical for a heterogeneous sys-
tem that contains a time-evolving mix of newer and
older devices, and makes it difficult to add capac-
ity in arbitrary increments without extensive recon-
figuration when customer requirements change. It
can also cause overprovisioning by constraining the
SSP to the design points of devices in the market: a
given customer’s workload may use a large fraction
of a disk array’s bandwidth, but only a small por-
tion of its capacity. Besides, it does not solve the
problem of resource allocation: the actual perfor-
mance characteristics of real arrays are notoriously
hard to model and predict.

We propose to solve this problem by adding one
level of virtualization between hosts and storage
devices. Façade provides the abstraction of vir-
tual stores with performance guarantees, by inter-
cepting every I/O request from hosts and redirect-
ing them to the back-end devices. Unlike raw disk
arrays (which do not guarantee predictable perfor-
mance) Façade provides, by design, statistical guar-
antees for any client SLO. Virtual stores are not re-
stricted by the design decisions embodied in any
particular array, and can effectively shield client
hosts from the effects of adding capacity or recon-
figuring the back-end.

To evaluate this idea, we implemented a

Façade prototype as a software layer between the
workload-generator/trace-replayer and the storage
device. Façade can also be implemented as a shim
box, a thin controller that sits between the hosts
and the storage. We subjected the prototype to a
variety of workloads using several different com-
mercial disk arrays s back-end devices. We then
applied Façade’s basic mechanism to the particular
case of disk array virtualization: providing virtual
stores that have the same performance characteris-
tics as existing disk arrays. We found that Façade
is able to satisfy stringent SLOs even in the pres-
ence of dynamic, bursty workloads, with a mini-
mal impact on the efficiency of the storage device.
The performance of Façade virtual storage devices
is close to that of the device being emulated, even
with failures on the host storage device.

Our experiments indicate that Façade can sup-
port a set of workloads with SLOs on a storage
device if the device is capable of supporting them.
We assume that there is an external capacity plan-
ning/admission control component which limits the
workloads presented to Façade to what can be sup-
ported on the device. Façade can facilitate admis-
sion control by indicating when the device is ap-
proaching its limits; however, the design of an ad-
mission control component is outside the scope of
this paper.

The remainder of this paper is as follows. Sec-
tion 2 describes some related work. We introduce
the architecture and internal policies of Façade in
Section 3. We then evaluate Façade in Section 4,
both on general SLOs and for array virtualization;
we then conclude in Section 5.

2 Related work

There is an extensive body of work on net-
working SLAs [3] and network flow-control meth-
ods going back to the leaky bucket throttling algo-
rithm [23] and fair queueing [18, 9]. There are sev-
eral architectures for providing different levels of
services to different flows, including the Differen-
tiated Services (DiffServ) architecture [4] and the
QoSBox [7], by mapping groups of flows with sim-
ilar requirements into a few classes of traffic. Un-
fortunately, most of the techniques used do not gen-



2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 133

eralize to shared storage systems [24]: dropping
SCSI packets to relieve congestion is not an op-
tion, no traffic shapers exist within the system, the
performance of storage devices is much more de-
pendent on their current states than in the case of
network components, and simple linear models are
completely inadequate for performance prediction.

Wilkes suggested the notion of a storage QoS
controller that can be given per-workload perfor-
mance targets and enforces these using perfor-
mance monitoring, feedback based rate control and
traffic shaping.

Prior solutions have relied upon real-time
scheduling techniques [11]. Work on multimedia
servers [10] has primarily addressed the case in
which multiple similar streams must be serviced;
our version of the problem is more challenging, as
we have to process an arbitrary mix of workloads,
client hosts do not cooperate with our throttling
scheme, and we cannot tolerate long startup de-
lays when a workload arrives into the system. The
YFQ disk scheduling algorithm [5] is an approxi-
mate version of generalized processor sharing that
allows applications to reserve a fixed proportion of
a disk’s bandwidth. Sullivan used YFQ with lottery
scheduling to manage disk resources in a frame-
work that provides proportional share allocation to
multiple resources [22]. While YFQ does isolate
the performance offered to different applications, it
does not support have the notion of per-stream av-
erage latency bounds as Façade does. The Cello
framework [21] arbitrates disk resources among a
heterogeneous mix of clients. It depends on cor-
rectly pigeonholing incoming requests into the a
limited set of application classes (e.g., “throughput-
intensive, best-effort”), on assigning the correct rel-
ative priorities to each class, and on being able to
compute accurate estimated service times at the de-
vice. Façade is fully adaptive, can process a richer
variety of clients, and does not depend on the exis-
tence of accurate device models.

The concept of storage virtualization, where
strings of storage devices are logically coalesced,
has existed for over two decades in the MVS main-
frame operating system [8]. Modern operating sys-
tems include some form of logical volume man-
ager (e.g., HP-UX LVM [17]), which stripe fault-

tolerant logical volumes over multiple physical de-
vices. LVMs do not provide performance guar-
antees and must be configured separately on each
client host. A number of current commercial prod-
ucts provide storage virtualization across storage
devices in a storage area network, including SAN-
symphony from DataCore Software [19], IPstore
from FalconStor software [16] and the StorageApps
sv3000 virtualization appliance [14]; none of them,
however, provide performance guarantees for ap-
plications.

Automatic system design tools like Minerva [1]
and Hippodrome [2] build systems that satisfy
declarative, user-specified QoS requirements. They
effectively minimize overprovisioning by taking
into account workload correlations and detailed de-
vice capabilities to design device configuration and
data layouts. The whole storage system may be
redesigned in every refinement iteration, and there
typically is a substantial delay to migrate the data
online. As a result, they adapt to changes much
more slowly than Façade. We view these tools
as complementary to this work: Façade can han-
dle short-term workload variations through adap-
tive scheduling without migrating data, and possi-
bly postpone the need for a heavyweight system re-
design.

3 Structure and components of Façade

Façade is a dynamic storage controller for con-
trolling multiple I/O streams going to a shared stor-
age device, and to ensure that each of the I/O
streams receives a performance specified by its
service-level-objective (SLO). Façade is designed
for use in a storage management system (see Figure
1) with a separate capacity planning component.
The capacity planner allocates storage for each
workload on the storage device and ensures that
the device has adequate capacity and bandwidth
to meet the aggregate demands of the workloads
assigned to it. This allocation may be changed
periodically to meet changing workload require-
ments and device configurations [2]; however, such
reallocation occurs on a time scale of hours to
weeks. Façade manages device resources in time
scale of milliseconds, to enable SLO compliant per-



2nd USENIX Conference on File and Storage Technologies USENIX Association134

Storage Devices

FaçadeCapacity Planning

Allocate 

Stores

I/Os

Workload

Overload 

alarm

SLO

Storage 

allocation

Workload Specs 

(SLO)

Figure 1. Façade controller in a storage
management system.

formance isolation between dynamically varying
workloads.

Figure 1 shows the flow of information through
the storage management system. Workload perfor-
mance requirements, specified as an SLO, are given
to the capacity planner (possibly by a system ad-
ministrator). The capacity planner allocates stor-
age on a storage device, possibly using models to
determine if the device has adequate bandwidth to
meet the requirements of the workload in addition
to those already on it. It passes the allocation infor-
mation and the SLO requirements to Façade. The
workload sends I/O requests to Façade, which com-
municates with the storage device to complete the
requests. If Façade is unable to meet the SLO re-
quirements, this is communicated to the capacity
planner, possibly triggering a re-allocation.

A workload SLO consists of a pair of curves
specifying read and write latency as a function of
the offered request rate, plus a time window length
w. Average latency over a window should not
exceed the weighted average of the specified la-
tency bounds for the read/write mix and offered re-
quest rate during the window. Formally, we repre-
sent the two curves discretely as a vector of triples
((r1; tr1; tw1);(r2; tr2; tw2); : : : ;(rn; trn; twn)) where
0 < r1 < :: : < rn. We divide time into windows

Monitor

Controller

IO Scheduler

Completion

Target latencies, 

Queue depth

IO stats

IO Completion

Input 

queues

IO Request

IO Request Façade

Storage device

IO Arrival W
1

W
3 W

4

W
2

…

Storage 

allocation

Overload 

alarm

Device 

queue

Figure 2. Façade architecture.

(epochs) of length w. For a workload with fraction
of reads fr, the average latency over any time win-
dow should not exceed frtri +(1� fr)twi if the of-
fered request rate over the previous window is less
than ri. This formula implies a latency bound of tri
for read only workloads, twi for write-only work-
loads, and a linear interpolation between the two
bounds for mixed read/write workloads. By de-
fault, we assume r0 = 0 and rn+1 = trn+1 = twn+1 =
∞: in other words, there is no bound on the average
latency if the offered load exceeds rn. For exam-
ple, consider an application that generates up to 100
transactions per second, each of which causes up to
3 IOs. The transactions are required to complete
in 100ms on the average. In this case, one might
require an average latency of no more than 33ms
per IO so long as the IO rate is no more than 300
IOs/sec, leading to the SLO ((300;0:03;0:03)).

Façade structure

Façade implements SLOs through a combination
of real-time scheduling and feedback-based control
of the storage device queue (see Figure 2). This
control is based on very simple assumptions about
the storage device: we assume only that reducing
the length of the device queue reduces the latency
at the device, and increasing the device queue may
increase throughput. These properties are satisfied
by most disks and disk arrays.

Requests arriving at Façade are queued in per-
workload input queues. Façade has three main



2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 135

components that determine when these requests are
sent to the underlying storage device: an earliest
deadline first (EDF) IO scheduler, a statistics mon-
itor that collects I/O statistics, and a controller that
periodically adjusts targets for device queue depth
and workload latency. We describe these in order.

IO scheduler

Based on periodic input from the controller, the
IO scheduler maintains a target queue depth value
and per-workload latency targets, which it tries to
meet using Earliest Deadline First (EDF) schedul-
ing. The deadline for a request from work-
load Wk is arrivalTime(Wk) + latencyTarget(Wk),
where arrivalTime(Wk) is its arrival time and
latencyTarget(Wk) is a target supplied for Wk by
the controller. The deadline for the workload Wk is
the deadline of its oldest pending request.

The scheduler polls the device queue depth and
the input queues periodically (every 1ms in our im-
plementation) and also upon IO completions. Re-
quests are admitted to into the device queue in two
cases. (1) If the device queue depth is now less
than the current queue length target (supplied by
the controller — see ahead), the scheduler repeat-
edly picks the workload with the earliest deadline
and sends the first request in its queue to the de-
vice until the device queue depth target is met. (2)
If the deadline for any workload is already past,
the past-due requests from that workload are sched-
uled even if this causes the queue depth target to
be exceeded. Since the intent of controlling queue
depth is to allow workloads with low latency re-
quirements to satisfy their SLOs, it is not sensible
to throttle these workloads: this rule allows newly-
arrived low-latency workloads to be served even as
the queue depth adapts.

Statistics monitor

The monitor receives IO arrivals and completions.
It reports the completions to the IO scheduler, and
also computes the average latency and read and
write request arrival rates for active workloads ev-
ery P seconds and reports them to the controller.
This control period length P is a tuneable parame-
ter; we used P = 0:05.

Controller

The controller periodically (every P seconds) ad-
justs the target workload latencies and the target
device queue length. The target workload laten-
cies must be adjusted because, as the workload re-
quest rates vary, Façade must give those requests a
different latency based on the workload SLO. The
device queue depth must also be adjusted to meet
these varying workload requirements. The con-
troller tries to keep the device queue as full as pos-
sible while still meeting latency targets, since a full
device queue improves device utilization and the
throughput it can produce. However, long device
queues usually mean long latencies; hence, when
any workload demands a low latency, the controller
reduces the target queue depth. Reducing the queue
size ensures that there are not too many outstand-
ing I/Os in the device queue when an I/O requiring
low latency arrives. When it arrives, it will be the
next one to be sent to the device, and it will exe-
cute faster because the device has fewer outstand-
ing I/Os.

The controller uses the IO statistics it re-
ceives from the monitor every P seconds to
compute a new latency target based on the
SLO for each workload as follows. For-
mally: suppose the SLO for workload Wk is
((r1; tr1; tw1);(r2; tr2; tw2); : : : ;(rn; trn; twn)) with a
window w, and the fraction of reads reported is fr.
Let r0 = 0, rn+1 = ∞, trn+1 = twn+1 = ∞. Then

latencyTarget(Wk ) = tri fr + twi(1� fr)

if ri�1 � readRate(Wk)+writeRate(Wk)< ri.

The controller also computes a (possibly) new
target queue depth for the storage device, based
on the IO latencies measured in the previous con-
trol period and the current latency targets. If any
workload has a new target latency lower than that
measured in the previous control period, the queue
depth target is reduced proportionately. On the
other hand, if the new target latencies are all larger
than those achieved in the previous control period,
then the queue depth target can be increased. We
check if the queue depth in the previous control pe-
riod was in fact limited by the queue depth target;
if so, we raise the new queue depth target slightly



2nd USENIX Conference on File and Storage Technologies USENIX Association136

to allow for greater throughput. Formally, this is a
non-linear feedback controller implemented by the
following equations: Suppose the measured aver-
age IO latency for workload Wk is L(Wk), the max-
imum queue depth achieved in the last control pe-
riod is Qmax and the previous target device queue
depth is Qold . Then, the new queue depth target
Qnew is computed as follows:

E = min
k

latencyTarget(Wk)

L(Wk)

Qnew =

8<
:

E � Qold if E < 1,
(1+ ε)Qold else if Qmax = Qold ,
Qold otherwise.

Here, ε is a small positive value; we use ε = 0:1.
The intial queue depth is set to 200 entries.

4 Experimental evaluation

We empirically validated the accuracy, stabil-
ity and efficiency of our techniques for providing
virtual stores with QoS guarantees through exper-
iments on two modern commercial arrays. The
FC-60 [12] used in our experiments is a mid-
range array with 30 Seagate Cheetah ST118202LC
disks (10,000rpm, 18.21GB each), and two con-
trollers with 256MB of NVRAM cache in each. We
set up a RAID5 Logical Unit (LU) using 6 disks
on this array. The VA-7100 [15] is a small ar-
ray with 10 Seagate Cheetah ST318451FC disks
(15000rpm, 18.35GB each) and two controllers
each with 256MB of NVRAM cache. We config-
ured two AutoRAID [25] LUs on this. Each array
is connected to an HP 9000-N4000 server through
a Brocade Silkworm 2800 switch using two Fi-
breChannel links.

We employed both synthetic and trace workloads
in this evaluation, using the Buttress workload gen-
erator, which can produce synthetic workloads and
replay traces. We used synthetic traces consisting
of 67% reads and 33% writes, distributed randomly
over the LU; the I/O rates are described with the
experiments and the workloads were asynchronous
(open) except where specified. The trace work-
load is an I/O trace from a production OpenMail
email server [13]. For each workload execution,
we collected traces of I/O activity at the device

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000

IO/s

L
a
te
n
c
y
(m
s
)

Achieved latency Target SLO

Figure 3. Latency at various IO rates is
compared with SLO for a Façade VSD on a
FC-60 LU.

driver level, including I/O submission and comple-
tion times, read/write characteristics, size and log-
ical address information. These traces were then
analyzed to provide throughput, latency and other
statistics.

We implemented Façade as a software layer be-
tween Buttress and the device driver. A Virtual
Storage Device (VSD) is a virtual LU provided by
the Façade layer. It has an associated Service Level
Objective (SLO) and stores its data on a real (phys-
ical) LU. One or more VSDs may use the same un-
derlying real LU as a backend device.

We now describe a series of experiments de-
signed to test how well Façade meets its goals: to
match the SLO, to provide performance isolation
between workloads, to emulate LUs on a differ-
ent disk array, and to operate without significantly
reducing the overall efficiency of the underlying
hardware. In each case, the SLO window size is
1 second.

4.1 SLO compliance

This experiment tests how well Façade ensures
compliance with a SLO. A Façade VSD was cre-
ated on an FC-60 LU, with a specified SLO. We
then ran a synthetic workload with 67% reads and
33% writes, increasing the IO rate in increments
of 50 IOs/sec against the VSD. There is an ad-
ditional background workload with a high IO re-



2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 137

quest rate, but no latency requirement. Figure 3
is a throughput-latency plot showing the measured
latency of each throughput range for the Façade
VSD and the target based on the SLO. As the graph
shows, the Façade VSD latency remains slightly
lower than the latency bound in the SLO.

4.2 Performance isolation

An essential property that Façade should satisfy
is performance isolation: workloads on different
VSDs should not interfere with each other. In par-
ticular, the performance of the workload on one
Façade VSD should not be fall below its SLO due to
bursts in the load on another Façade VSD sharing
the same physical hardware. We verify here how
well our implementation provides this property.

Figure 4 shows time-plots of latency and
throughput for two Façade VSDs, both using same
FC-60 LU as a back-end device. VSD1 has a bursty
workload: 200 IOs/sec, repeatedly on for 5 sec-
onds and off for 5 seconds. VSD1 also has a rela-
tively tight latency bound of 50ms: the correspond-
ing SLO is (200IOs=sec;50ms;50ms)). VSD2 has
a stable workload of 500 IOs/sec, but a much looser
latency requirement of 4000ms; the correspond-
ing SLO is ((500IOs=sec;4000ms;4000ms)). Both
workloads are 4KB IOs, 67% reads and 33% writes.

The latency time-plot shows that VSD1 receives
the latency it requires—while on, its average la-
tency is approximately 50ms. The latency and
throughput seen by VSD2 varies to comply with
the requirements of VSD1; however, the require-
ments of the VSD2 SLO are also met. In particu-
lar, the latency provided by VSD2 is affected at ap-
proximately the same rate of change when a burst
begins (increasing) and when it ends (decreasing).
This is because the bursty workload has the more
stringent latency requirement, so requests for the
other workload are delayed in Façade, and spread
evenly over a longer period of time; in fact, some
VSD2 requests are delayed almost until the follow-
ing burst starts. For VSD2, throughput varies be-
tween 300 and 800 IOs/sec, and the latency goes as
high as 2000ms. When the same workloads are run
on the FC-60 LU without Façade control, they are
clearly not isolated from one another, as shown in
Figure 4(a). The latency for VSD1 exceeds its SLO

Workload Without Façade With Façade
VSD1 75 ms 42 ms
VSD2 72 ms 43 ms
VSD3 71 ms 3922 ms

Table 1. Performance isolation experiment
2: Standard deviation of latency

latency (50ms) regularly.
Figure 5 shows an experiment with a more com-

plex set of workloads. In this case we have three
workloads, VSD1, VSD2, and VSD3. VSD1 is a
workload running for 30s on, 10s off at 50 IO/s with
a latency target of 55ms. VSD2 is a workload runs
for 10s at 75 IO/s, 10s at 25 IO/s, 10s at 75 IO/s and
then off for 10s. When VSD2 is issuing 25 IO/s its
latency target is 30ms when it is issuing 50 IO/s its
latency target is 60ms. VSD3 issues requests con-
tinuously and has a high latency target of 2000ms.
Even with this complex set of workloads, where the
SLO latency target of VSD1 is sometimes higher
and sometimes lower than that of VSD2, Façade is
able to track and meet all latency targets. With-
out Façade control, the latencies for VSD1, VSD2
and VSD3 are always similar and both VSD1 and
VSD2 regularly miss their latency targets.

For this experiment, we also measured the stan-
dard deviation of latency, shown in Table 1. The
standard deviation of latency for VSD1 and VSD2,
the workloads with tight latency requirements,
dropped by a factor of 1:67��1:78 when Façade
control was used; the standard deviation of the
greedy workload VSD3 increased much. This is
consistent with what one would expect intuitively:
since Façade controls the latencies that the work-
loads receive, workloads with low latency require-
ments see latencies close to their requirement, and
therefore a lower variance. Workloads with a high
latency tolerance see sometimes low and some-
times high latencies, depending on load, and thus
a higher variance.

4.3 Maximum SLO

The performance of a workload running on a
dedicated LU gives an upper bound on the SLO that



2nd USENIX Conference on File and Storage Technologies USENIX Association138

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120

Time(sec)

IO
/s

VSD 1 VSD 2

0

50

100

150

200

250

0 20 40 60 80 100 120

Time(sec)

L
a
te
n
c
y
(m
s
)

VSD 1 VSD 2 VSD1 SLO

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100 120

Time(sec)

IO
/s

VSD 1 VSD 2

1

10

100

1000

10000

0 20 40 60 80 100 120

Time(sec)

L
a
te
n
c
y
(m
s
)

VSD 1 VSD 2 VSD1 SLO

(a) Without Façade control (b) With Façade control

Figure 4. Performance isolation experiment 1.

LU can support for that workload. We use this to
test how stringent an SLO Façade can support. We
measured the latencies at various IO rates on an oth-
erwise unloaded FC-60 LU using our standard syn-
thetic workload. We used this latency-throughput
curve as the SLO for a Façade VSD, VSD0, running
on the FC-60 LU; this should be the most stringent
SLO the FC-60 LU can support for this workload.
The workload for VSD0 has a gradually increas-
ing IO rate. We also added a greedy workload with
no specific latency requirement, VSD1, that issues
IOs as quickly as possible to add load to the LU.
More precisely, VSD1 is a synchronous (closed)
workload with 2000 outstanding IOs (4KB random
reads) and zero think-time.

Figure 6 shows the measured latency and
throughput for VSD0 and VSD1. VSD0 tracks
quite faithfully the SLO, which is the performance

of the workload on a dedicated array and VSD1 is
completely starved out after 80 seconds. This in-
dicates that Façade can support the most stringent
SLO that the underlying device can support.

4.4 Multiplexing

While performance isolation can be provided
conventionally to workloads by segregating their
data on LUs residing on separate hardware compo-
nents, there can be an overall loss of performance as
a result. (Equivalently, it may be necessary to over-
provision the storage for each workload in order to
meet performance requirements.) We show in this
experiment that combining workloads on the same
hardware using Façade can provide substantially
better performance than segregating the workloads.

There are two workloads: VSD1 is a bursty
workload that repeatedly requests 300 IOs/sec for



2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 139

0

100

200

300

400

500

600

0 20 40 60 80 100 120

Time(sec)

IO
/s

VSD 1 VSD 2 VSD 3

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Time(sec)

L
a
te
n
c
y
(m
s
)

VSD 1 VSD 2 VSD 3

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Time(sec)

IO
/s

VSD 1 VSD 2 VSD 3

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Time(sec)

L
a
te
n
c
y
(m
s
)

VSD 1 VSD 2

(a) Without Façade control (b) With Façade control

Figure 5. Performance isolation experiment 2.
Latencies for VSD3 have been dropped from Figure 5(b) for clarity.

10 seconds, and then is off for 20 seconds; when
on, it has a latency requirement of 20ms. VSD2
is a greedy workload (representing, for example,
a backup); it has no specific latency requirement
but will read data as quickly as possible. Figure
7 shows time plots of latency and throughput for
VSD1 and VSD2 for two cases: (1) baseline: VSD1
and VSD2 each on a separate FC-60 LU and (2)
VSD1 and VSD2 with their data striped across both
LUs, using Façade. Our results show that when

VSD1 and VSD2 run on separate LUs, VSD2 re-
ceives a steady throughput of approximately 847
IOs/sec. When VSD1 and VSD2 use both LUs
under Façade, the throughput received by VSD2
is more variable, generally ranging between 450–
1500 IOs/sec; however, the average throughput is
1146 IOs/sec, substantially higher than the through-
put using separate LUs. VSD1 receives its required
throughput and SLO latency in both cases; how-
ever, there is a spike in the latency whenever a



2nd USENIX Conference on File and Storage Technologies USENIX Association140

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120

Time(sec)

IO
/s

Separate Combined

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

Time(sec)

L
a
te
n
c
y
(m
s
)

Separate Combined

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100 120

Time(sec)

IO
/s

Separate Combined

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100 120

Time(sec)

L
a
te
n
c
y
(m
s
)

Separate Combined

VSD1 VSD2

Figure 7. Combining VSDs on single hardware gives higher throughput to VSD2

burst of requests begins. The spike subsides quickly
— within one time window. The spike occurs be-
cause Façade builds up a large device queue when
VSD1 is off, in order to maximize the throughput
of VSD2. When VSD1 comes on, the controller
quickly reduces the device queue target, but it takes
some time for the device queue to drain sufficiently
that the VSD1 SLO latency target can be met.

4.5 Resource utilization

To test how efficiently Façade uses resources, we
measured the size of the array required to support
a workload, with and without Façade. We used the
same workloads as in the first performance isola-
tion experiment: VSD1, a synthetic workload of
200 IOs/sec, repeatedly on for 5 seconds and off
for 5 seconds, with a latency target of 50ms when
on, and VSD2, which requests 500 IOs/sec with a
latency bound of 4000ms. We run two workloads
together against a series of FC-60 RAID5 LUs with



2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 141

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100 120

Time(sec)

IO
/s

VSD 0 VSD 1 Measured

1

10

100

1000

10000

100000

0 20 40 60 80 100 120

Time(sec)

L
a
te
n
c
y
(m
s
)

VSD 0 VSD 1 Measured

Figure 6. Façade matches maximum (ded-
icated) array performance. The “mea-
sured” data is VSD0 on a dedicated array
without Façade, VSD0 and VSD1 are to-
gether with Façade control. Measured and
VSD0 have complete overlap.

increasing numbers of disks, starting with 3 disks,
until the latency target was met, with and without
the use of Façade.

Figure 8 shows time plots of latency for VSD1
both with and without Façade. This figure shows
that without Façade, 8 disks are required to fully
meet the latency targets. With 7 disks the targets
are missed by 10-20% and with 6 disks the latencies
are almost double the target values.

Using Façade, considerably fewer resources are
required to meet the target latencies. With only 3

disks Façade is usually able to meet the latency re-
quirement; however, when a burst of requests starts,
there is a latency spike similar to those seen in Sec-
tion 4.4, due to the time required for draining the
device queue. With 4 disks, there are sufficient re-
sources in the system to drain the queue quickly,
and the latency spikes disappear. Using Façade, the
SLO latency can be met with 50% fewer resources.

4.6 Façade overhead

Since Façade adds an additional control layer be-
tween the application and the storage device that
modulates the queue depth at the storage device, it
is possible that there is some loss of efficiency at the
storage device. We measure the Façade overhead in
this experiment.

For this experiment, we emulated a VA-7100 LU
on itself, as follows. We measured the mean latency
for reads and writes for a VA-7100 LU over a range
of offered loads, and used this curve as an SLO. We
formed a Façade VSD using this SLO and the same
LU as the underlying device. We then replayed an
Openmail trace against this VSD and (separately)
directly against the underlying VA-7100 LU, mea-
suring the throughput and latency over time for
both. (A real trace was used for this test because
the SLO was formed from measurements based on
synthetic workloads.) Since the only difference be-
tween the two cases is the use of a Façade layer, the
overhead due to Façade should appear as a loss of
performance for the VSD run as compared to the
run against the VA-7100 LU. Figure 9 shows the
time plots of latency and throughput for both cases.
It is clear that the performance of the LU under
this workload is mostly unaffected by adding the
Façade layer: overall, adding the Façade layer left
throughput unchanged, and increased the average
latency by less than 2%. We conclude that Façade
adds a negligible overhead.

4.7 Performance under failure

When workloads are segregated on separate
disk-groups in order to provide performance isola-
tion, the impact of a disk failure on a workload can
be dramatic. When multiple workloads are consol-
idated onto a shared group of disks, a single work-



2nd USENIX Conference on File and Storage Technologies USENIX Association142

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100 120

Time(sec)

L
a
te
n
c
y
(m
s
)

3 Disks 4 Disks SLA

0

10

20

30

40

50

60

70

80

90

100

110

120

0 20 40 60 80 100 120

Time(sec)

L
a
te
n
c
y
(m
s
)

8 Disks 7 Disks 6 Disks SLA

With Façade Without Façade

Figure 8. VSD1 latency with and without Façade: the workload requires 8 disks to meet its
target without Façade and only 4 disks with Facade.

load need not bear the entire brunt of the disk fail-
ure: instead, the effect can be reduced by spread-
ing the performance loss over several workloads or
shifted to workloads that can better tolerate the im-
pact. Additionally, if the throughput of the shared
disks is not completely used in normal mode then
the impact of the failure can be reduced yet farther.
We demonstrate this in the following experiment.

We measured the throughput and latency of re-
playing an Openmail trace in four configurations:
(1) on a VA-7100 LU (without Façade control); (2)
on a VA-7100 LU with one disk failed; (3) simulta-
neously, with small time offsets, on 2 Façade VSDs
on an FC-60, each configured with SLOs to match
the performance characteristics of a VA-7100 LU;
and (4) in the same configuration as (3), but with
one disk failed on the FC-60. On the FC-60 config-
urations, there is an additional background load of
450 IOs/sec with no latency requirement.

Figure 10 shows time plots of latency and
throughput for one trace-replay for configurations
(1), (2) and (4). The VA-7100 LU plot serves as
a baseline for comparison and as the SLO for the
Façade plot. For the uncontrolled VA-7100 LU,
the latency increases by two orders of magnitude
when a disk fails, and the throughput drops by
more than one order of magnitude compared with
the normal-mode VA-7100 baseline. We have not

shown plots for the Façade VSD on the FC-60 in
normal mode (configuration 3) to avoid cluttering
the figures; however, these would show a perfor-
mance similar to the normal-mode VA-7100. The
plots for the Façade VSD on the FC-60 with one
failed disk also show a performance almost identi-
cal to the VA-7100 normal mode performance. The
effects of the disk failure are entirely absorbed by
the background workload (not shown), which suf-
fers a 10% drop in throughput compared with the
normal-mode FC-60 operation.

We have demonstrated in Section 4.1 that Façade
faithfully matches the specified SLO when the ar-
ray it is running on is operating normally. This ex-
periment shows further that, if possible, the SLO
will be matched also in degraded mode.

5 Conclusions and future work

Traditional solutions to the problem of providing
guaranteed performance to independent, competing
clients are either inaccurate or substantially more
expensive than necessary. By virtue of its fine-grain
monitoring and decision-making, Façade is able to
use resources much more efficiently, and to balance
the load among multiple back-end devices while
satisfying the performance requirements of many
different client applications. Our experiments, run
on a representative mid-range storage system with



2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 143

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120

Time(sec)

L
a
te
n
c
y
(m
s
)

Orig. Response Time Façade response Time

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100 120

Time(sec)

IO
/s

Orig. IO/s Façade IO/s

Figure 9. Façade overhead.

commercial disk arrays, show that Façade meets
SLOs with a very high probability while making ef-
ficient use of the storage resources. Façade can sig-
nificantly reduce the hardware resources required
to support a combination of workloads with tight
latency requirements. Façade is capable of sup-
porting workloads with performance requirements
that change over time and it can handle as stringent
an SLO as the underlying device can support. The
performance penalty introduced by the additional
processing layer is also negligible, and far out-
weighed by the resulting advantages. We believe
that fully-adaptive storage virtualization appliances
such as Façade should play a fundamental role in
storage system design; not only does Façade pro-
vide fine-grain QoS enforcement, but it also adapts

1

10

100

1000

10000

100000

0 20 40 60 80 100 120 140

Time(secs)

L
a
te
n
c
y
(m
s
)

VA7100 Failed VA7100 Façade VSD1/1 failure

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140

Time(secs)

IO
/s

VA7100 Failed VA7100 Façade VSD1/1 failure

Figure 10. Latency and throughput for
Openmail trace on VA7100 LU, VA 7100 LU
with one disk failed, and Façade VSD on
FC-60 with one disk failed.

very quickly to changes in the workload, and is not
strongly dependent on accurate workload character-
izations or storage device models in order to func-
tion.

This work has postulated the existence of an ad-
mission control component. In future work, we
hope to demonstrate the use of Façade to facili-
tate an adaptive admission control mechanism. An-
other potential extension for this work is to allow
each client application to specify an elasticity co-
efficient [6] (i.e., a measure of how tolerant it is to
deviations from the SLO) and exploit that flexibil-
ity in the controller algorithm. Also, multiple in-



2nd USENIX Conference on File and Storage Technologies USENIX Association144

stances of Façade in the same storage system could
cooperate, in order to handle larger workloads that
hit common back-end devices. We would also like
to explore the implications of providing not only
performance SLOs, but also availability/reliability
guarantees, by dynamically changing the data lay-
out in a way that is transparent to the client hosts.

Acknowledgements

We thank our shepherd, Eran Gabber, the anony-
mous reviewers and the members of the HP Labs
Storage Systems Department for helpful comments
on this work. In particular, we thank John Wilkes
for suggestions on the choice of SLOs. We are also
grateful to Hernan Laffitte for help with repeated
disk array reconfigurations.

References

[1] G. A. Alvarez, E. Borowsky, S. Go, T. Romer, R. Becker-
Szendy, R. Golding, A. Merchant, M. Spasojevic,
A. Veitch, and J. Wilkes. Minerva: an automated re-
source provisioning tool for large-scale storage systems.
ACM Transactions on Computer Systems, 19(4):483–
518, November 2001.

[2] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,
and A. Veitch. Hippodrome: running circles around stor-
age administrators. In Conference on File and Storage
Technologies (FAST), (Monterey, CA), pages 175–188.
USENIX, January 2002.

[3] C. Aurrecoechea, A. Campbell, and L. Hauw. A sur-
vey of QoS architectures. Multimedia Systems, 6(3):138–
151, 1998.

[4] S. Blake et al. An architecture for differentiated services,
December 1998. IETF RFC 2475.

[5] John L. Bruno, Jose Carlos Brustoloni, Eran Gabber,
Banu Ozden, and Abraham Silberschatz. Disk schedul-
ing with quality of service guarantees. In ICMCS, Vol. 2,
pages 400–405, 1999.

[6] G. Buttazzo and L. Abeni. Adaptive workload man-
agement through elastic scheduling. Real-time Systems,
24(1–2):7–24, July 2002.

[7] N. Christin and J. Liebeherr. The QoSbox: A PC-router
for quantitative service differentiation in IP networks.
Technical Report CS-2001-28, University of Virginia,
November 2001.

[8] IBM Corp. MVS/DFP V3R3 System Programming Ref-
erence, 1996. SC26-4567-02.

[9] Alan Demers, Srinivasan Keshav, and Scott Shenker.
Analysis and simulation of a fair queueing algorithm.

In SIGCOMM Symposium on Communications Architec-
tures and Protocols (Austin, Texas), pages 1–12, Sept
1989.

[10] J. Gemmell, H. Vin, D. Kandlur, V. Rangan, and
L. Rowe. Multimedia storage servers: A tutorial. IEEE
Computer, 28(5):40–49, 1995.

[11] P. Goyal and H. Vin. Generalized guaranteed rate
scheduling algorithms: a framework. IEEE/ACM Trans-
actions on Networking, 5(4):561–571, 1997.

[12] Hewlett-Packard Company, Palo Alto, CA. HP Sure-
Store E Disk Array FC60 User’s Guide, 2000. Pub. No.
A5277-90001.

[13] Hewlett-Packard Company, Palo Alto, CA. OpenMail
Technical Reference Guide, 2.0 edition, 2001. Part No.
B2280-90064.

[14] Hewlett-Packard Company, Palo Alto, CA. HP Stor-
ageApps sv3000 White Paper, 2002.

[15] Hewlett-Packard Company, Palo Alto, CA. HP Storage-
Works Virtual Arrays, VA7000 Family, User and Service
Guide, 2002. Pub. No. A6183-96004.

[16] FalconStor Inc. Ipstor: Build an end-to-end IP-
based network storage infrastructure. White paper.
http://www.falconstor.com, 2001.

[17] T. Madell. Disk and File Management Tasks on HP-UX.
Prentice Hall, Upper Saddle River, NJ, 1996.

[18] J. Nagle. On packet switches with infinite storage. IEEE
Transactions on Communications, 35(4):435–438, 1987.

[19] SANSymphony version 5 datasheet.
http://www.datacore.com, 2002.

[20] G. Schreck. Making storage organic. Technical report,
Forrester Research, May 2002.

[21] P. Shenoy and H. Vin. Cello: A disk scheduling frame-
work for next generation operating systems. Real-Time
Systems, 22(1-2):9–48, January 2002.

[22] David G. Sullivan and Margo I. Seltzer. Isolation with
flexibility: A resource management framework for cen-
tral servers. In Proc. of the USENIX Annual Techni-
cal Conference (San Diego, California), pages 337–350,
2000.

[23] J. Turner. New directions in communications. IEEE
Communications, 24(10):8–15, October 1986.

[24] J. Wilkes. Traveling to Rome: QoS specifications for
automated storage system management. In International
Workshop on Quality of Service (Karlsruhe, Germany),
pages 75–91, June 2001.

[25] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The
HP AutoRAID hierarchical storage system. In Proceed-
ings of the Fifteenth ACM Symposium on Operating Sys-
tems Principles, pages 96–108, Copper Mountain, CO,
December 1995. ACM Press.


