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Abstract

The RAID-6 specification calls for a storage system with
multiple storage devices to tolerate the failure of any two
devices. Numerous erasure coding techniques have been
developed that can implement RAID-6; however, each
has limitations. In this paper, we describe a new class of
RAID-6 codes called the Liberation Codes. These codes
encode, update and decode either optimally or close to
optimally. Their modification overhead is lower than all
other RAID-6 codes, and their encoding performance is
often better as well. We provide an exact specification of
the Liberation Codes and assess their performance in re-
lation to other RAID-6 coding techniques. In the process,
we describe an algorithm called bit matrix scheduling,
which improves the performance of decoding drastically.
Finally, we present a freely available library which facil-
itates the use of Liberation Codes in RAID-6 sytems.

1 Introduction

As storage systems have grown in size and complex-
ity, applications of RAID-6 fault-tolerance have become
more pervasive. RAID-6 is a specification for storage
systems composed of multiple storage devices to tolerate
the failure of any two devices. In recent years, RAID-6
has become important when a failure of one disk drive
occurs in tandem with the latent failure of a block on a
second drive [9]. On a standard RAID-5 system, this
combination of failures leads to permanent data loss.
Hence, storage system designers have started turning to
RAID-6.

Unlike RAID-1 through RAID-5, which detail exact
techniques for storing and encoding data to survive sin-
gle disk failures, RAID-6 is merely a specification. The
exact technique for storage and encoding is up to the im-
plementor. Various techniques for implementing RAID-
6 have been developed and are based on erasure codes
such as Reed-Solomon coding [2, 26], EVENODD cod-

ing [3] and RDP coding [9]. However, all of these tech-
niques have limitations — there is no one de facto stan-
dard for RAID-6 coding.

This paper offers an alternative coding technique for
implementing RAID-6. We term the technique The
RAID-6 Liberation Codes, as they give storage systems
builders a way to implement RAID-6 that frees them
from problems of other implementation techniques. We
give a complete description of how to encode, modify
and decode RAID-6 systems using the Liberation Codes.
We also detail their performance characteristics and com-
pare them to existing codes.

The significance of the Liberation Codes is that they
provide performance that is optimal, or nearly optimal in
all phases of coding. They outperform all other RAID-6
codes in terms of modification overhead, and in many
cases in encoding performance as well. We provide
a freely available library that implements the various
pieces of Liberation Coding. As such, we anticipate
that they will become very popular with implementors
of RAID-6 systems.

2 RAID-6 Specification and Current Im-
plementations

RAID-6 is a specification for storage systems with k + 2
nodes to tolerate the failure of any two nodes. Logically,
a typical RAID-6 system appears as depicted in Figure 1.
There are k + 2 storage nodes, each of which holds B

bytes, partitioned into k data nodes, D0, . . . Dk−1, and
two coding nodes P and Q. The entire system can
store kB bytes of data, which are stored in the data
nodes. The remaining 2B bytes of the system reside in
nodes P and Q and are calculated from the data bytes.
The calculations are made so that if any two of the k + 2
nodes fail, the data may be recovered from the surviving
nodes.

Actual implementations optimize this logical configu-
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Figure 1: Logical overview of a RAID-6 system.

ration by setting B to be smaller than each disk’s capac-
ity, and then rotating the identity of the data and coding
devices every B bytes. This helps remove hot spots in
the system in a manner similar to RAID-5 systems. A
pictoral example of this is in Figure 2. For simplicity, in
the remainder of this paper we assume that each storage
node contains exactly B bytes as in Figure 1 since the ex-
trapolation to systems as in Figure 2 is straightforward.
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Figure 2: In actual implementations, the identities of the
data and coding nodes rotate every B bytes. This helps
to alleviate hot spots on the various drives.

The P device in RAID-6 is calculated to be the parity
of the data devices. In this way, RAID-6 systems extrap-
olate naturally from RAID-5 systems by simply adding
a Q drive. It also means that the sole challenge in design-
ing a RAID-6 coding methodology lies in the definition
of the Q drive. This definition must result in a maximum
distance separable (MDS) code, which means that the Q

drive cannot hold more than B bytes, and the original
data must be restored following the failure of any two of
the k + 2 devices.

There are several criteria that a storage system de-
signer must evaluate when selecting an erasure coding
technique for a RAID-6 system:

• Encoding performance is the speed of calculating P

and Q from D0 . . . Dk−1.

• Modification performance is the speed of recomput-
ing relevant parts of P and Q when one of the Di’s
is modified.

• Decoding performance is the speed of recalculating
lost data or coding information following one or two
failures.

• Ease of Implementation is the complexity of the
technique.

• Cost of Implementation pertains to licensing issues,
as many erasure coding techniques are patented.

Below, we detail current techniques for implementing
RAID-6.

Reed-Solomon Coding [26] is a very powerful
general-purpose coding technique. It involves breaking
up the data on each device into w-bit words, and then
having the i-th word on the Q device be calculated from
the i-th word on each data device using a special kind
of arithmetic called Galois Field arithmetic (GF (2w)).
Galois Field addition is equivalent to the XOR opera-
tion; multiplication is much more difficult and requires
one of a variety of techniques for implementation. As
such, Reed-Solomon Coding is expensive compared to
the other techniques. Reed-Solomon Coding is described
in every text on coding theory [18, 19, 20, 27] and has tu-
torial instructions written explicitly for storage systems
designers [21, 24].

Reed-Solomon Coding for RAID-6: Recently, An-
vin has described a clever optimization to Reed-Solomon
encoding for RAID-6 [2], based on the observation that
multiplication by two may be implemented very quickly
when w is a power of two. This optimization speeds up
the performance of Reed-Solomon encoding. It does not
apply to modification or decoding.

Parity Array coding applies a different method-
ology which is based solely on XOR operations.
It works logically on groups of w bits from each
data and coding device. The data bits of de-
vice Di are labeled di,0, . . . , di,w−1, and the coding bits
are p0, . . . , pw−1 and q0, . . . , qw−1 for the P and Q de-
vices respectively. The p bits are calculated to be the
parity of their respective data bits:

pj = d0,j ⊕ d1,j ⊕ . . . ⊕ dk−1,j .

The q bits are defined to be the parity of some other col-
lection of the data bits, and this definition is what dif-
ferentiates one parity array code from another. A parity
array system for k = 5 and w = 4 is depicted in Figure 3.

Obviously, to be efficient from an implementation
standpoint, parity array codes do not work on single bits,
but instead on w groups of bytes per RAID-6 block. In
this way, we are not performing XORs on bits, but on
machine words, which is very efficient. Thus the block
size B defined above is restricted to be a multiple of w

and the machine’s word size.
Cauchy Reed-Solomon Coding is a technique that

converts a standard Reed-Solomon code in GF (2w) to
a parity array code which works on groups of w bits [6].
This has been shown to reduce the overhead of encoding
and decoding [25], but not to the degree of the codes that
we describe next.
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Figure 3: An example Parity Array code with k = 5
and w = 4. Logically, each element is a bit, but for
efficient implementations, each element is a fixed-size
group of words. Since there are w groups per device, the
block size B for the code must be a multiple of w.

EVENODD coding departs from the realm of Reed-
Solomon coding by defining the qi bits from diagonal
partitions of the data bits [3]. We do not provide an exact
specification, but to give a flavor, we show the EVEN-
ODD code for k = 5 and w = 4 in Figure 4 (since the P

device is parity, we do not picture it). The value S is an
intermediate value used to calculate each qi.

Figure 4: EVENODD coding with k = 5 and w = 4.
The P device is not shown, as it is the parity of the data
devices.

The parameter w must be selected such that w+1 ≥ k

and w+1 is a prime number. Although this gives storage
designers a variety of w to choose from for a given value
of k, smaller w are more efficient than larger w.

EVENODD coding performs significantly better than
all variants of Reed-Solomon coding. Its encoding per-
formance is roughly k − 1

2 XOR operations per coding
word. Optimal encoding is equal to k − 1 XOR oper-
ations per coding word [4, 29]. Its modification perfor-
mance is roughly three coding words per modified data
word. Optimal is two. Finally, its decoding performance
is roughly k XOR operations per failed word. As with
encoding, optimal decoding performance is k − 1 XOR
operations per failed word. Thus, EVENODD coding

achieves performance very close to optimal for both en-
coding and decoding. EVENODD coding was patented
in 1996 [5].

RDP Coding is a parity array coding technique that
is very similar to EVENODD coding, but improves upon
it in several ways [9]. As with EVENODD coding, the
number of bits per device, w, must be such that w + 1
is prime; however w + 1 must be strictly greater than k

rather than ≥ k. RDP calculates the bits of the Q de-
vice from both the data and parity bits, and in so doing
achieves better performance. We show the RDP code
for k = 4 and w = 4 in Figure 5.

Figure 5: RDP coding with k = 4 and w = 4. As always,
the pj bits are the parity of the di,j bits.

When w = k or w = k + 1, RDP achieves optimal
performance in both encoding and decoding. When w ≥
k +2, RDP still outperforms EVENODD coding and de-
coding, but it is not optimal. Like EVENODD coding,
RDP coding modifies roughly three coding bits per mod-
ified data bit. RDP coding was patented in 2007 [10].

There are other very powerful erasure coding tech-
niques that have been defined for storage systems. We
do not address them in detail because they do not ap-
ply to RAID-6 systems as defined above. However, we
mention them briefly. The X-Code [29] is an extremely
elegant erasure code for two-disk systems that encodes,
decodes and updates optimally. However, it is a vertical
code that requires each device to hold two coding words
for every k data words. It does not fit the RAID-6 speci-
fication of having coding devices P and Q, where P is a
simple parity device.

The STAR code [17] and Feng’s codes [11, 12] de-
fine encoding methodologies for more than two failures.
Both boil down to EVENODD coding when applied to
RAID-6 scenarios. There are other codes [13, 14, 15, 28]
that tolerate multiple failures, but are not MDS, and
hence cannot be used for RAID-6.

2.1 Why Do We Need Another Code?

Simply put, Reed-Solomon Coding is slow, and the par-
ity array coding techniques exhibit suboptimal modifica-
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tion performance and are patented. While patents should
not have relevance to academic research papers, they do
have a profound impact on those who implement storage
systems and are the main reason why RAID-6 systems
are still being implemented with Reed-Solomon coding.
As such, alternative coding techniques that exhibit near-
optimal performance are quite important.

Regardless of the patent issue, the Liberation codes
have many properties that make them an attractive alter-
native to other RAID-6 techniques:

• They are parity array codes whose encoding perfor-
mance is close to optimal. For all values of k, they
outperform EVENODD encoding, and for some
values of k, they even outperform RDP encoding.
Thus, for many values of k, they represent the best
known RAID-6 codes.

• To build flexible RAID-6 systems, it is often ad-
vantageous to allow k to grow and shrink dynam-
ically within limits. For the parity array codes (in-
cluding Liberation codes), this means employing a
fixed value of w in all cases that can accomodate the
largest possible value of k. EVENODD and RDP
coding systems will work in this way, but their per-
formance suffers when k shrinks, because they can-
not compensate by decreasing w as well. In con-
trast, Liberation codes improve as w grows, and
thus exhibit better performance in systems where k

varies beneath a threshhold value.

• Their modification performance is very close to
the optimal value of two updated coding bits per
modified data bit. This is an improvement on the
other coding techniques, and it can be shown that it
achieves the lower bound for all RAID-6 codes.

• The decoding performance is within 15% of opti-
mal.

• Their implementation is freely available.

We describe the codes and analyze their performance
below.

3 Liberation Code Description

Liberation coding and decoding are based on a bit
matrix-vector product very similar to the those used
in Reed-Solomon coding [18, 20] and Cauchy Reed-
Solomon coding [6]. This product precisely defines
how encoding and modification are performed. De-
coding is more complex and to proceed efficiently, we
must augment the bit matrix-vector product with the
notion of “bit matrix scheduling.” We first describe
the general methodology of bit matrix coding and then

define the Liberation Codes and discuss their encod-
ing/modification performance. We then describe decod-
ing, and how its performance may be improved by bit
matrix scheduling. We compare the Liberation Codes to
the other RAID-6 codes in Section 4.

3.1 Bit Matrix Coding Overview

Bit matrix coding is a parity array coding technique first
employed in Cauchy Reed-Solomon coding [6]. In gen-
eral, there are k data devices and m coding devices,
each of which holds exactly w bits. The system uses
a w(k + m)×wk matrix over GF (2) to perform encod-
ing. This means that every element of the matrix is either
zero or one, and arithmetic is equivalent to arithmetic
modulo two. The matrix is called a binary distribution
matrix, or BDM. The state of a bit matrix coding sys-
tem is described by the matrix-vector product depicted
in Figure 6.

Figure 6: An example bit matrix coding system.

The BDM has a specific format. Its first wk rows com-
pose a wk × wk identity matrix, pictured in Figure 6 as
a k × k matrix whose elements are each w × w bit ma-
trices. The next mw rows are composed of mk matrices,
each of which is a w × w bit matrix Xi,j .

We multiply the BDM by a vector composed of the wk

bits of data. We depict that in Figure 6 as k bit vec-
tors with w elements each. The product vector contains
the (k + m)w bits of the entire system. The first wk

elements are equal to the data vector, and the last wm

elements contain the coding bits, held in the m coding
devices.
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Note that each device corresponds to a row of w × w

matrices in the BDM, and that each bit of each device
corresponds to one of the w(k + m) rows of the BDM.
The act of encoding is to calculate each bit of each Ci as
the dot product of that bit’s row in the BDM and the data.
Since each element of the system is a bit, this dot product
may be calculated as the XOR of each data bit that has a
one in the coding bit’s row. Therefore, the performance
of encoding is directly related to the number of ones in
the BDM.

To decode, suppose some of the devices fail. As long
as there are k surviving devices, we decode by creating
a new wk × wk matrix BDM’ from the wk rows cor-
responding to k of the surviving devices. The product
of that matrix and the original data is equal to these k

surviving devices. To decode, we therefore invert BDM’
and multiply it by the survivors – that allows us to cal-
culate any lost data. Once we have the data, we may use
the original BDM to calculate any lost coding devices.

For a coding system to be MDS, it must tolerate the
loss of any m devices. Therefore, every possible BDM’
matrix must be invertible. This is done in Cauchy Reed-
Solomon coding by creating each Xi,j from a Cauchy
matrix in GF (2w) [6]. However, these do not perform
optimally. It is an open question how to create optimally
performing bit matrices in general.

Since the first wk rows of the BDM compose an iden-
tity matrix, we may precisely specify a BDM with a Cod-
ing Distribution Matrix (CDM) composed of the last wm

rows of the BDM. It is these rows that define how the
coding devices are calculated. (In coding theory, the
CDM composes the leftmost wk columns of the parity
check matrix).

3.2 RAID-6 Bit Matrix Encoding

When this methodology is applied to RAID-6, the BDM
is much more restricted. First, m = 2, and the two cod-
ing devices are named P = C0 and Q = C1. Since
the P device must be the parity of the data devices, each
matrix X0,i is equal to a w × w identity matrix. Thus,
the only degree of freedom is in the definition of the X1,i

matrices that encode the Q device. For simplicity of no-
tation, we remove the first subscript and call these ma-
trices X0, . . . , Xk−1. A RAID-6 system is depicted in
Figure 7 for k = 4 and w = 4.

To calculate the contents of a coding bit, we sim-
ply look at the bit’s row of the CDM and calculate the
XOR of each data bit that has a one in its correspond-
ing column. For example, in Figure 7, it is easy to see
that p0 = d0,0 ⊕ d1,0 ⊕ d2,0 ⊕ d3,0.

When a data bit is modified, we observe that each data
bit di,j corresponds to column wi + j in the CDM. Each
coding bit whose row contains a one in that column must

Figure 7: Bit matrix representation of RAID-6 coding
when k = 4 and w = 4.

be updated with the XOR of the data bit’s old and new
values.

Therefore, to employ bit matrices for RAID-6, we are
faced with a challenge to define the Xi matrices so that
they have a minimal number of ones, yet remain MDS. A
small number of ones is important for fast encoding and
updating. We shall see the impact on decoding later in
the paper.

(a) EVENODD.

(b) RDP.

(c) Cauchy Reed-Solomon coding.

Figure 8: The Xi matrices defining the BDM’s for vari-
ous RAID-6 coding techniques, k = 6 and w = 6.

It is an interesting aside that any RAID-6 code based
on XOR operations may be defined with a bit matrix. To
demonstrate, we include the Xi for EVENODD, RDP
and Cauchy Reed-Solomon coding when k = 6 and w =
6 in Figure 8. It is a simple matter to verify that each of
these defines an MDS code.

There are 61 ones in the EVENODD matrices, 60 in
the RDP matrices and 46 in the Cauchy Reed-Solomon
matrices. Thus, were one to encode with the bit matri-
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ces, the Cauchy Reed-Solomon coding matrices would
be the fastest, which would seem to contradict the fact
that RDP encodes optimally. We explore this more fully
in Section 3.4 below, where we demonstrate how to im-
prove the performance of bit matrix encoding so that it
does not rely solely on the number of ones in the matrix.

The performance of updating, however, is directly re-
lated to the number of ones in each column, and there
is no way to optimize that further. The fact that EVEN-
ODD and RDP coding update must update roughly three
coding bits per data bit is reflected in their CDM’s, which
have an average of 36+61

36 = 2.69 and 36+60
36 = 2.67 ones

per column respectively (we add 36 ones for the identity
matrices that encode the P device). The Cauchy Reed-
Solomon CDM requires only 2.31 modifications per data
bit.

3.3 Liberation Code Specification

We now define the Liberation codes. As with EVEN-
ODD and RDP coding, the value of w is restricted and
depends on k. In particular, w must be a prime num-
ber ≥ k and > 2. To specify the Xi matrices, we use two
pieces of notation:

• We define Iw
→j to be the w × w identity matrix

whose columns have been rotated to the right by j

columns. Note that Iw = Iw
→0

• We define Ow
i,j to be a w×w matrix where every el-

ement is zero, except for the element in row (i mod
w) and column (j mod w), which equals one.

The Liberation codes are defined as follows:

• X0 = Iw.

• For 0 < i < k, Xi = Iw
→i + Ow

y,y+i−1, where y =
i(w−1)

2 . An alternate and equivalent specification is
that y = w−i

2 when i is odd, and y = w − i
2 when i

is even.

Figure 9 shows the Xi matrices for the Liberation
Code when k = 7 and w = 7. It may be proven that
for all prime w > 2, the Liberation Code for k ≤ w is an
MDS code. The complete proof is beyond the scope of
this paper, and is instead in an accompanying technical
report [23]. We provide a sketch of the proof at the end
of this paper in Section 7.

For any given values of k and w, the Xi matrices have
a total of kw + k − 1 ones. Add this to the kw ones
for device P ’s matrices, and that makes 2kw + k − 1
ones in the CDM. If a coding bit’s row of the CDM has o

ones, it takes (o − 1) XORs to encode that bit from the
data bits. Therefore, each coding bit requires an average
of 2kw+k−1−2w

2w
= k−1+ k−1

2w
XORs. Optimal is k−1.

Figure 9: The Xi matrices for the Liberation Code
when k = 7 and w = 7.

The average ones per column of the CDM
is 2kw+k−1

kw
= 2 + k−1

kw
, which is roughly two.

Optimal is two. Thus, the Liberation codes achieve near
optimal performance for both encoding and modifica-
tion. We explore the notion of optimality in terms of the
number of ones in an MDS RAID-6 CDM in Section 6
below. There we will show that the Liberation Codes
achieve the lower bound on number of ones in a matrix.

3.4 Bit Matrix Scheduling for Decoding

To motivate the need for bit matrix scheduling, consider
an example when k = 5 and w = 5. We encode using the
Liberation code, and devices D0 and D1 fail. To decode,
we create BDM’ by deleting the top 10 rows of the BDM
and inverting it. The first 10 rows of this inverted matrix
allow us to recalculate D0 and D1 from the surviving
devices. This is depicted in Figure 10.

Figure 10: Decoding D0 and D1 from the Liberation
Codes when k = 5 and w = 5.

Calculating the ten dot products in the straightforward
way takes 124 XORs, since there are 134 ones in the ma-
trix. Optimal decoding would take 40 XORs. Now, con-
sider rows 0 and 5 of the matrix which are used to calcu-
late d0,0 and d1,0 respectively. Row 0 has 16 ones, and
row 5 has 14 ones, which means that d0,0 and d1,0 may
be calculated with 28 XORs in the straightforward man-
ner. However, there are 13 columns in which both rows
have ones. Therefore, suppose we first calculate d1,0,
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which takes 13 XORs, and then calculate d0,0 using the
equation:

d0,0 = d1,0 ⊕ d2,0 ⊕ d3,0 ⊕ d4,0 ⊕ p0.

This only takes four additional XOR operations, lower-
ing the total for the two bits from 28 XORs to 17.

This observation leads us to a simple algorithm which
we call bit matrix scheduling, for performing a collec-
tion of dot products in a bit matrix-vector product more
efficiently than simply performing each dot product in-
dependently. To describe the algorithm, we use the fol-
lowing assumptions and notation:

• We are multiplying matrix M by vector V to calcu-
late the product vector U . All elements are bits and
arithmetic is in GF (2).

• Matrix M has r rows and c columns. The element in
row i, column j is denoted M [i, j]. Vector V has c

elements denoted V [0], . . . , V [c − 1], and vector p

has r elements denoted U [0], . . . , U [r − 1].

• We denote row i of M as Mi.

• From[] is a vector of r integers, each initialized to
-1.

• Ones[] is a vector of r integers, initialized so that
Ones[i] equals the number of ones in row i of the
matrix.

• Sum(i, j) is a c-element bit vector that equals the
sum (in GF (2)) of Mi and Mj .

• Notdone is a set of integers initialized to contain
all values in [0..r − 1].

The algorithm proceeds in r steps. Each step performs
the following operations:

1. Select i such that i ∈ Notdone and Ones[i] is min-
imized. Break ties arbitrarily.

2. If From[i] equals -1, then U [i] is calculated to
be the XOR of all V [j] such that M [i, j] = 1.
If From[j] does not equal -1, then U [i] is calcu-
lated as the XOR of U [From[i]] and all V [j] such
that M [i, j] + M [From[i], j] = 1.

3. Remove i from Notdone.

4. For all j ∈ Notdone, calculate x to be one plus the
number of ones in Sum(i, j). If x < Ones[j], then
set Ones[j] to x, and From[j] to i.

Thus, if it is more efficient to calculate the product ele-
ment from another product element than from the origi-
nal vector, this algorithm makes that happen. When the
algorithm operates on the example in Figure 10, it ends
up with the following schedule:

• Calculate d1,3: 7 XORs.
• Calculate d0,3 from d1,3: 4 XORs.
• Calculate d1,4 from d0,3: 5 XORs.
• Calculate d0,4 from d1,4: 4 XORs.
• Calculate d1,0 from d0,4: 5 XORs.
• Calculate d0,0 from d1,1: 4 XORs.
• Calculate d1,1 from d0,0: 4 XORs.
• Calculate d0,1 from d1,1: 4 XORs.
• Calculate d1,2 from d0,1: 5 XORs.
• Calculate d0,2 from d1,2: 4 XORs.

This is a total of 46 XORs, as opposed to 124 without
scheduling. An optimal algorithm would decode with 40
XORs.

We note that this algorithm does not always yield an
optimal schedule of operations. For example, one can
encode using the matrix in Figure 8(a) (EVENODD cod-
ing with k = 6, w = 6) with exactly 41 XOR operations
by first calculating S = d1,5 ⊕ d2,4 ⊕ d3,3 ⊕ d4,2 ⊕ d5,1

and using S in each dot product. When the bit scheduling
algorithm is applied to that matrix, however, it is unable
to discover this optimization, and in fact yields no im-
provements in encoding: the dot products take 55 XORs.

However, for decoding with the Liberation Codes, this
algorithm improves performance greatly. As an inter-
esting aside, the algorithm derives the optimal schedule
for both encoding and decoding using the bit matrix ver-
sions of RDP codes, and it improves the performance of
both encoding and decoding with Cauchy Reed-Solomon
coding. It is an open question to come up with an effi-
cient algorithm that produces optimal schedules for all
bit matrix-vector products.

3.5 Caching Schedules

The algorithm for bit matrix scheduling, like the inver-
sion of the BDM’ matrix, is O(w3). Since w is likely to
be relatively small in a RAID-6 system, and since encod-
ing and decoding both involve XORs of O(w2) distinct
elements, the inversion and bit scheduling should not add
much time to performance of either operation. However,
since the total possible number of schedules is bounded
by

(
k+2
2

)
, it is completely plausible to precalculate each

of the
(
k+2
2

)
schedules and cache them for faster encod-

ing and decoding.

4 Performance

We have implemented encoding, modification and de-
coding using all the techniques described in this paper.
In all the graphs below, the numbers were generated by
instrumenting the implementation and counting the XOR
operations. When there is a closed-form expression for a
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metric (e.g., encoding with RDP, EVENODD, or Liber-
ation codes), we corroborated our numbers with the ex-
pression to make sure that they matched.

4.1 Performance of Encoding

We measure the performance of encoding as the average
number of XOR operations required per coding word.
This includes encoding both the P and Q devices. Since
optimal encoding is k − 1 XORs per coding word, we
can normalize by dividing the number of XORs per cod-
ing word by k − 1 to achieve the overhead of the code:
the factor of encoding performance worse than optimal
performance. Thus, low values are desirable, the optimal
value being one. These values are presented in Figure 11.
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Figure 11: Encoding performance of various XOR-based
RAID-6 techniques. Optimal encoding is k−1 XORs per
coding word.

RDP encoding achieves optimality when k+1 and k+
2 are prime numbers. Otherwise, the code is shortened
by assuming that there are data devices that hold noth-
ing but zeros [9]. As the code is asymmetric, the best
performance is achieved by assuming that the first w− k

devices are zero devices. This is as opposed to EVEN-
ODD coding, which performs best when the last w − k

devices are zero devices. With both RDP and EVEN-
ODD coding, w is a function of k, as smaller w perform
better than larger w.

With Liberation codes, this is not the case – larger w

perform better than smaller w. For that reason, we plot
four values of w in Figure 11. The lines are flat, because
the number of XORs per coding word (from Section 3.3)
is equal to k − 1 + k−1

2w
, and therefore their factor over

optimal is 1 + 1
2w

. As such, the codes are asymptoti-
cally optimal as w → ∞. As a practical matter though,
smaller w require the coding engine to store fewer blocks
of data in memory, and may perform better than larger w

due to memory and caching effects. The selection of a
good w in Liberation Coding thus involves a tradeoff be-

tween the fewer XORs required by large w and the re-
duced memory consumption of small w.

The performance of EVENODD encoding is
roughly k − 1

2 , which is worse than both RDP and
Liberation encoding except when k = w in Liberation
Coding and the two perform equally.

The Cauchy Reed-Solomon codes for various w

are also included in the graph. Like Liberation
Codes, Cauchy Reed-Solomon codes perform better with
larger w than with smaller w. However, unlike the other
codes, their performance relative to optimal worsens as k

grows. It is interesting to note that they outperform
EVENODD coding for small k. Since their performance
is so much worse than the others, we omit them in sub-
sequent graphs.
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Figure 12: Encoding performance of RDP, EVENODD
and Liberation codes when w is fixed.

One of the attractive features of these XOR codes is
that if w is chosen to be large enough, then the same
code can support any k ≤ w devices. Adding or sub-
tracting devices only involves modification to coding de-
vices P and Q, and does not require re-encoding the en-
tire system as, for example, the X-Code would [29]. For
that reason, Figure 12 shows the performance of RDP,
EVENODD and Liberation encoding when w is fixed.
Since RDP and EVENODD coding require w + 1 to be
prime, and Liberation coding requires w to be prime, we
cannot compare the same values of w, but values that
are similar and that can support nearly the same number
of data devices. Although RDP outperforms the Liber-
ation codes for larger k, for smaller k, the Liberation
codes perform better. Moreover, their performance rel-
ative to optimal is fixed for all k, which may ease the act
of scheduling coding operations in a distributed storage
system.
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4.2 Performance of Modification

Figure 13 shows the average number of coding bits that
must be modified when a data bit is updated. With
both EVENODD and RDP coding, this number increases
with w, reaching a limit of three as w grows. With Liber-
ation codes, the opposite is true, as the number of mod-
ified coding bits is roughly two. Clearly, the Liberation
codes outperform the other two in modification perfor-
mance.
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Figure 13: Modification performance of RDP, EVEN-
ODD and Liberation codes.

4.3 Performance of Decoding

For single failures, all RAID-6 systems decode identi-
cally. If the failure is in a data device, then it may be de-
coded optimally from the P device. Otherwise, decoding
is identical to encoding. Thus, we only concern ourselves
with two-device failures. To test decoding, we measured
the performance of decoding for each of the

(
k+2
2

)
possi-

ble combinations of failures. As with encoding, we mea-
sure number of XORs per failed word and present the
average value. In Figure 14 we plot the measurements,
again as a factor over optimal, which is k − 1 XORs per
failed word.

In general, RDP coding exhibits the best decoding per-
formance, followed by EVENODD coding and then Lib-
eration coding, which decodes at a rate between ten and
fifteen percent over optimal. The effectiveness of bit ma-
trix scheduling is displayed in Figure 15, which shows
the performance of Liberation decoding without schedul-
ing for w = 17 and w = 31.

Figure 15 clearly shows that without bit scheduling,
Liberation codes would be unusable as a RAID-6 tech-
nique. It remains a topic of future work to see if the
scheduling algorithm of Section 3.4 may be improved
further.
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Figure 14: Decoding performance of RDP, EVENODD
and Liberation codes.
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Figure 15: The effectiveness of bit matrix scheduling on
Liberation decoding.

4.4 Comparison to Reed-Solomon Coding

We do not include a detailed comparison of Liberation
Coding to standard Reed-Solomon coding. Instead, in
Figure 16 we present measurements of the basic oper-
ations of Reed-Solomon coding on three different ma-
chines. The first machine is a MacBook Pro with a 2.16
GHz Intel Core 2 Duo processor. The second is a Dell
Precision with a 1.5 GHz Intel Pentium processor. The
third is a Toshiba Tecra with a 1.73 GHz Intel Pentium
processor. On each, we measure the bandwidth of three
operations: XOR, multiplication by an arbitrary constant
in GF (28) and multiplication by two using Anvin’s op-
timization [2]. All operations are implemented using the
jerasure library presented in section 5. In particular,
multiplication by an arbitrary constant is implemented
using a 256 × 256 multiplication table.

We may project the performance of standard and op-
timized Reed-Solomon coding as follows. Let B⊕ be
the bandwidth of XOR (in GB/s), B⊗ be the bandwidth
of arbitrary multiplication, and B⊗2 be the bandwidth of
multiplication by two. The time to encode one gigabyte
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Figure 16: The bandwidth of basic operations for Reed-
Solomon Coding.

of data on k devices using standard Reed-Solomon cod-
ing is:

2 ∗
k − 1

B⊕

+
k − 1

B⊗

.

This is because the P device is still encoded with parity,
and the Q device requires (k − 1) multiplications by a
constant. The time to encode one megabyte with Anvin’s
optimization simply substitutes B⊗ with B⊗2. Finally,
optimal encoding time is 2 ∗ k−1

B⊕
, reflecting k− 1 XORs

per coding word.
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Figure 17: The projected performance of standard and
optimized Reed-Solomon coding using the bandwidth
measurements from Figure 16.

In Figure 17, we plot the performance of encoding us-
ing the bandwidth numbers from Figure 16. For standard
Reed-Solomon coding, the performance of decoding is
roughly equal to encoding performance. Anvin’s opti-
mization improves the performance of encoding roughly
by a factor of three. However, it is much worse than the
XOR-based codes. Moreover, the optimization does not
apply to decoding, which will perform at the same rate as

standard Reed-Solomon coding. Thus, we conclude that
even with the optimization, Reed-Solomon coding is an
unattractive alternative for RAID-6 applications.

5 Liberation Coding Library

We have implemented a library in C/C++ to facilitate all
Liberation coding operations. It is part of the jerasure li-
brary [22], which implements all manners of matrix and
bit matrix coding, including regular Reed-Solomon cod-
ing, Cauchy Reed-Solomon coding and Liberation cod-
ing. The library is roughly 6000 lines of code and is
freely available under the GNU LPL.

Table 1 lists some of the relevant procedures from the
library. In all the procedures, k, w and B are as defined
in this paper, m is the number of coding devices (m=2
for RAID-6), data and coding are pointers to data and
coding regions, and totalsize is the total number of bytes
in each device. Note that totalsize must be a multiple
of B and the machine’s word size. Bit matrices are repre-
sented as linear arrays of integers whose values are either
zero or one. The element in row i and column j is in ar-
ray element ikw + j.

The first procedure creates a schedule from a bit ma-
trix, which may be an encoding or decoding bit matrix.
The schedule is an array of operations, where each oper-
ation is itself an array of five integers:

< copy|xor, fromid, frombit, toid, tobit >,

where copy|xor specifies whether the operation is to
copy data or XOR it, fromid is the id of the source
device, frombit is the source bit number (i.e. a num-
ber from 0 to w − 1), toid is the id of the destination
device and tobit is the destination bit number. jera-
sure generate schedule cache() creates a cache of all
possible decoding schedules.

The two encoding routines encode using either a bit
matrix or a schedule, and the three decoding routines de-
code using a bit matrix with no schedule, a bit matrix
generating a schedule on the fly, or a schedule cache re-
spectively.

jerasure invert bitmatrix() inverts a rows × rows

bit matrix, and the two following routines are helper
routines for performing bit matrix dot products and
scheduled operations respectively. Finally, libera-
tion coding bitmatrix generates the Liberation Coding
bit matrix defined in Section 3.3 for the given values of k

and w.

6 Minimal Number of Ones

We state the following properties of RAID-6 codes
and w × w bit matrices [4, 23]:
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int ** jerasure_bitmatrix_to_schedule(int k, int m, int w, int *bitmatrix);
int *** jerasure_generate_schedule_cache(int k, int m, int w, int *bitmatrix);

void jerasure_bitmatrix_encode(int k, int m, int w, int *bitmatrix,
char **data, char **coding,
int totalsize, int B);

void jerasure_schedule_encode(int k, int m, int w, int **schedule,
char **data, char **coding,
int totalsize, int B);

int jerasure_bitmatrix_decode(int k, int m, int w,
int *bitmatrix, int *erasures,
char **data, char **coding,
int totalsize, int B);

int jerasure_schedule_decode_lazy(int k, int m, int w,
int *bitmatrix, int *erasures,
char **data, char **coding,
int totalsize, int B);

int jerasure_schedule_decode_cache(int k, int m, int w,
int ***cache, int *erasures,
char **data, char **coding,
int totalsize, int B);

int jerasure_invert_bitmatrix(int *mat, int *inv, int rows);
void jerasure_bitmatrix_dotprod(int k, int w, int *bitmatrix_row,

int *src_ids, int dest_id,
char **data, char **coding,
int totalsize, int B);

void jerasure_do_scheduled_operations(char **ptrs, int **schedule, int B);

int * liberation_coding_bitmatrix(int k, int w);

Table 1: Relevent procedures from the Jerasure Coding Library [22].

• Property #1: Given a RAID-6 code that uses
only XORs, this code may be represented by a
CDM, which in turn may be specified by the ma-
trices X0, . . . , Xk−1. If the code is MDS, then
each Xi must be an invertible w × w matrix.

• Property #2: Given a MDS RAID-6 code as above,
for every i, j such that i �= j, the matrix (Xi + Xj)
must be invertible.

• Property #3: If a w×w matrix is invertible, then it
must have at least w ones.

• Property #4: A permutation matrix, Iw
π is a w × w

matrix that has w ones such that there is exactly one
one in every row and column of the matrix. Permu-
tation matrices are the only matrices with exactly w

ones that are invertible.
• Property #5: Let Iw

π and Iw
π′ be two permutation

matrices. Their sum (Iw
π + Iw

π′) is not invertible.

Now consider a RAID-6 code represented
by X0, . . . , Xk−1 such that for some i �= j, Xi

and Xj have exactly w ones each. This code cannot be
MDS, because Xi and Xj must be permutation matrices,

or they are not invertible. Since they are permutation
matrices, their sum is not invertible. Therefore, a
RAID-6 code may only have one Xi that has exactly w

ones. The other Xj must have more than w ones.
Since the Liberation Codes have one matrix with ex-

actly w ones, and k−1 matrices with w+1 ones, they are
minimal RAID-6 matrices. It is an interesting by prod-
uct of this argument that no MDS RAID-6 code can have
optimal modification overhead. The Liberation Codes
thereby achieve the lower bound on modification over-
head. As an aside, the X-Code [29] does have optimal
modification overhead; however the X-Code does not fit
the RAID-6 paradigm.

7 Sketch of the MDS Proof

First we specify some notation: In the descriptions that
follow, < x >w is equal to (x mod w). If x is negative,
< x >w is equal to < w + x >w.

It is a trivial matter to prove that the Xi matrices for
Liberation codes are invertible. Moreover, it is easy to
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prove that (X0 + Xi) is invertible for 0 < i < w. The
challenge in proving the Liberation codes to be MDS lies
in the invertibility of (Xi + Xj) for 0 < i < j < w.

To demonstrate the invertibility of these matrices, we
define a class of w × w matrices L to contain all matri-
ces M such that:

M = Iw
→i + Iw

→j + Ow
x,x+i−1 + Ow

z,z+j−1,

with i, j, x and z being subject to the following con-
straints:

• w is an odd number greater than one.
• 0 ≤ i < j < w.
• GCD(j − i, w) = 1.
• If (j − i) is even, < z − x >w= w − j−i

2 .

• If (j − i) is odd, < z − x >w= w−(j−i)
2 .

In Figure 18 we show two examples matrices ∈ L. In
the first, (j−i) = 4, and < z−x >w= 5, which is indeed
7 − 4

2 . In the second, (j − i) = 1, and < z − x >w= 3,
which is 7−1

2 .

i = 1, j = 5 i = 2, j = 3
x = 3, z = 1 x = 6, z = 2

Figure 18: Two matrices M ∈ L.
.

In the technical report, we prove by induction that all
matrices M ∈ L are invertible [23]. Here we demon-
strate that in the Liberation codes, when 0 < i < j < w,
the matrix M = (Xi + Xj) ∈ L. For example,
when w = 7, (X1 + X5) is equal to the first matrix in
Figure 18, and (X2 + X3) is equal to the second matrix.

From the Liberation code definition in Section 3.3:

(Xi + Xj) = Iw
→i + Iw

→j + Ow
x,x+i−1 + Ow

z+i−1,

where x = i(w−1)
2 and z = j(w−1)

2 . Therefore, it is in
the proper format to be an element of L, so long as the
constraints are satisfied.

Since w is prime number greater than two, it must be
an odd number greater than one, and GCD(j−i, w) = 1.
Now, consider the difference (z − x):

(z − x) =
j(w − 1)

2
−

i(w − 1)

2

=
(j − i)(w − 1)

2
.

When (j − i) is even:

< z − x >w = <
(j − i)(w − 1)

2
>w

= <
j − i

2
(w − 1) >w

= < −
j − i

2
>w

= w −
j − i

2
.

When (j − i) is odd:

< z − x >w = <
(j − i)(w − 1)

2
>w

= <
(j − i − 1)(w − 1)

2
+

w − 1

2
>w

= < w −
j − i − 1

2
+

w − 1

2
>w

= < w +
w − 1 − (j − i − 1)

2
>w

= < w +
w − (j − i)

2
>w

=
w − (j − i)

2
.

Thus, (Xi + Xj) fits the constraints to be an element
of L, and is invertible.

8 Conclusions/Future Work

In this paper, we have defined a new class of erasure
codes, called Liberation Codes, for RAID-6 applications
with k data devices. They are parity array codes rep-
resented by w × w bit matrices where w is a prime
number ≥ k. Their encoding performance is excellent,
achieving a factor of 1 + 2

w
over optimal. This is an im-

provement in all cases over EVENODD encoding, and
in some cases over RDP encoding. Their decoding per-
formance does not outperform the other two codes, but
has been measured to be within 15% of optimal. Their
modification overhead is roughly two coding words per
modified data word, which is not only an improvement
over both EVENODD and RDP coding, but is fact opti-
mal for a RAID-6 code.

In order to make decoding work quickly, we have pre-
sented an algorithm for scheduling the XOR operations
of a bit matrix-vector product. The algorithm is simple
and not effective for all bit matrices, but is very effective
for Liberation decoding, reducing the overhead of decod-
ing by a factor of six when w = 17, and over eleven
when w = 31.

Besides comparing Liberation Codes to RDP and
EVENODD coding, we assess their performance in com-
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parison to Reed-Solomon coding. In all cases, they out-
perform Reed-Solomon coding greatly. We have written
a freely-available library to facilitate the use of Libera-
tion Codes in RAID-6 applications.

In sum, Liberation Codes are extremely attractive al-
ternatives to other RAID-6 implementations. We antic-
ipate that their simple structure, excellent performance
and availability in library form will make them popular
with RAID-6 implementors.

Our future work in this project is proceeding along
three lines. First, the Liberation Codes are only defined
for prime w. We are currently working to discover opti-
mal RAID-6 codes for non-prime w. In particular, val-
ues of w which are powers of two are quite attractive.
Our search has been based on Monte-Carlo techniques,
attempting to build good matrices from smaller matrices
and to improve on the best current matrices by modifying
them slightly. Currently, the search has yielded optimal
matrices for nearly every value of k ≤ 8 and w ≤ 32.
We will continue to explore these constructions.

Second, we are looking to construct better bit matrix
scheduling algorithms. Although the Liberation decod-
ing cannot be improved much further, it is clear from
our current algorithm’s inability to schedule EVENODD
coding effectively that further refinements are avail-
able. In its simplest case, bit scheduling is equiva-
lent to common subexpression removal in compiler sys-
tems [1, 7, 8]. Huang et al have recently reduced this case
to an NP-complete problem and give a heuristic based on
matching to solve it [16]. However, the fact that one plus
one equals zero in GF (2) means that there are additional
ways to improve performance, one of which is illustrated
by the scheduling algorithm in Section 3.4. We are ex-
ploring these and other methodologies to further probe
into the problem.

Finally, we have yet to explore how Liberation Codes
may extrapolate systems that need to tolerate more fail-
ures. We plan to probe into minimal conditions for gen-
eral MDS codes based on bit matrices such as those pre-
sented in Section 6, to see if the Liberation Code con-
struction has application for larger classes of failures.

9 Availability

The jerasure library is available at http:

//www.cs.utk.edu/˜plank/plank/papers/

CS-07-603.html.
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