
Experiences with BOWL: Managing an Outdoor WiFi Network

(or How to Keep Both Internet Users and Researchers Happy?)

T. Fischer, T. Hühn, R. Kuck, R. Merz, J. Schulz-Zander, C. Sengul

TU Berlin/Deutsche Telekom Laboratories

{thorsten,thomas,rkuck,julius,cigdem}@net.t-labs.tu-berlin.de,ruben.merz@telekom.de

Abstract

The Berlin Open Wireless Lab (BOWL) project at

Technische Universität Berlin (TUB) maintains an out-

door WiFi network which is used both for Internet ac-

cess and as a testbed for wireless research. From the

very beginning of the BOWL project, we experienced

several development and operations challenges to keep

Internet users and researchers happy. Development chal-

lenges included allowing multiple researchers with very

different requirements to run experiments in the network

while maintaining reliable Internet access. On the oper-

ations side, one of the recent issues we faced was au-

thentication of users from different domains, which re-

quired us to integrate with various external authentica-

tion services. In this paper, we present our experience

in handling these challenges on both development and

operations sides and the lessons we learned.

Keywords: WiFi, configuration management, authenti-

cation, research, DevOps, infrastructure, testbed

1 Introduction

Wireless testbeds are invaluable for researchers to test

their solutions under real system and network condi-

tions. However, these testbeds typically remain ex-

perimental and are not designed for providing Internet

access to users. In the BOWL project [2, 7, 9], we

stepped away from the typical and designed, deployed

and currently maintain a live outdoor wireless network

that serves both purposes. The benefits are twofold [9]:

• University staff and students have outdoor wireless

network access. Our network covers almost the en-

tire Technische Universität Berlin (TUB) campus in

central Berlin (see Fig. 1).

• Researchers have a fully reconfigurable research

platform for wireless networking experimentation

that includes real network traffic (compared to syn-

thetic traffic).

During its lifetime, the BOWL network has signif-

icantly evolved from a prototype architecture and de-

sign in 2009 [7, 9] towards a production network, which

brings out several administrational and development

challenges. The network and its components, including

traffic generators, routers and switches interconnect with

Figure 1: Coverage of the BOWL network on the TU-

Berlin campus.

a variety of other networks and infrastructures which are

not controlled by the BOWL project, adding to the in-

herent complexity of running a production network. In

this paper, we focus on two of our many challenges that

we have experienced in the last year while moving from

a prototype to a more stable infrastructure. We present

our challenges from the perspective of development and

network operations and its reliance on external services,

respectively.

Development challenges were - and still are - numer-

ous [9]. The most prominent is the variety of people

that work on different subsets of network components,

and change network configuration and operating system

images. The requirements for associated services and in-

frastructure, as well as the research goals, continuously

change as we and other users change the way the BOWL

network is used on a daily basis. In fact, our experience

showed that it was necessary to rewrite the BOWL soft-

ware significantly during the development as well as the

operational lifetime of the BOWL project. Many of the

changes were also triggered with the feedback received

from external users.

From a purely operational point of view, authentica-

tion of users to the BOWL network has proven surpris-

ingly complex. A project-specific remote authentication

dial-in user service (RADIUS) installation is used as the



pivot point to integrate a number of other distributed

and disparate authentication solutions. Users include (1)

centrally managed university IT accounts, (2) users from

our own department, (3) users of the affiliated external

institution Deutsche Telekom Laboratories (hereafter T-

Labs), (4) project-only user accounts, and (5) eduroam

users. TUB user authentication is a critical part of the

contractual relationship with the university central IT de-

partment. The major challenge we faced and still face

is the recovering from errors that might lie in external

authentication services that we rely on to support these

accounts. In this paper, we present a major outage we

went through due to such problems and the lessons we

learned.

2 BOWL (Berlin Open Wireless Lab) and

DevOps Challenges

The main task of the BOWL project is to satisfy two

somehow conflicting requirements from two user groups

– Internet users and researchers (which are often devel-

opers). We see the following requirements as DevOps

challenges:

• Researchers demand a configurable network

(development): The testbed is intended for a wide

selection of research topics ranging from enhancing

measurement-based physical layer models for wire-

less simulation [8] to routing protocols [11, 12].

Hence, one of the goals of the BOWL project is to

allow multiple researchers to access the network,

deploy experimental services, change configura-

tions and run new experiments or repeat old exper-

iments while still ensuring Internet access. There-

fore, the BOWL project required the development

of several tools to automate software and configu-

ration deployment in the testbed. We discuss our

experience with these tools, and how they evolved

in Section 4.

• Internet users demand a reliable network (op-

eration): Changing the network configuration, de-

ploying and running experiments should not affect

the availability of Internet access. This implies that

basic connectivity should not be affected, or only

for a negligible time duration. It also means that

services such as authentication, DHCP and DNS

need to remain available in any experiment setup.

How BOWL network architecture addressed this

problem is summarized in Section 3. A major oper-

ational challenge is the authentication of different

type of users (e.g., Internet users from TUB and T-

Labs, and researchers) to the BOWL network, and

we discuss this in detail in Section 5.

3 BOWL Network Architecture

In addition to its outdoor network, the BOWL project is

in charge of two additional networks: (1) a smoketest

network, for early development and testing and (2) an

indoor network, for small-scale deployment and testing.

These networks are used for development and staging

before a full-scale deployment and measurements in the

outdoor network. Therefore, the research usage pattern

of the outdoor network is more bursty, with periods of

heavy activity followed by lighter usage, whereas the

smoketest and the indoor networks have been in heavy

use since their deployment in early 2008. In this paper,

we mainly focus on our experience with the outdoor net-

work.

The BOWL network architecture was first presented

in [9]. In this section, we summarize this architecture to

give the necessary information to understand the BOWL

environment and its challenges. The outdoor network

comprises more than 60 nodes deployed on the rooftops

of TUB buildings. It spans three different hardware ar-

chitectures (ARM, MIPS and x86). Each node is pow-

ered by Power over Ethernet (PoE), which simplifies ca-

bling requirements. All nodes are equipped with a hard-

ware watchdog, multiple IEEE 802.11a/b/g/n radio in-

terfaces and a wired Ethernet interface. One radio in-

terface is always dedicated to Internet access, the addi-

tional radio interfaces are free to be used in research ex-

periments, and the wired interface is used for network

management and Internet connectivity. All nodes are

connected via at least 100 Mbit/s Ethernet to a router

that is managed by the project. A VLAN network en-

sures a flat layer 2 connectivity from our router to each

node. Our router ensures connectivity to the BOWL in-

ternal network, the TUB network and the Internet. In

its default configuration (which is called the rescue con-

figuration), the network is set up as a bridged layer 2

infrastructure network. Association to the access inter-

face and encryption of the traffic is protected by WPA2

(from the standard IEEE 802.11i [1]). Authentication is

performed with IEEE 802.1x and RADIUS.

Each node runs OpenWrt [5] as the operating system.

The OpenWrt build system typically produces a mini-

mally configured image. To tailor this image to each

node, the image is configured at boot time by an auto-

configuration system that applies a so-called configura-

tion to the image. A configuration includes all the con-

figuration files that go under the /etc/config direc-

tory (the layout is specific to OpenWrt), and additional

files, scripts and packages that may be needed by the ex-

perimenter. The details of the auto-configuration system

are explained in Section 4.

By default, every node runs a default rescue image

and uses the aforementioned rescue configuration. Re-

searchers install guest images in extra partitions and



use guest configurations. Because of the unique needs

of experiment monitoring and reconfiguration at run-

time, a network management and experiment monitor-

ing system was developed, which also went through sig-

nificant changes from its version presented in [9]. In

essence, it comprises two main components: a node-

controller, which runs on each node and a central node-

manager. Each node-controller connects to one node-

manager. However, with the recent changes, several

node-managers can be now run in parallel i.e. one

for each experiment if several parallel experiments are

needed to be run or for development. Our typical op-

eration requires one node manager per network (e.g.,

smoketest, indoor and outdoor). Thanks to the under-

lying VLAN infrastructure and virtualization of the cen-

tral router, the traffic generated by each experiment can

be isolated, if multiple experiments are running in the

network. More details on this topic can be found in [9].

Unwanted side effects due to using experiment soft-

ware (e.g., crashes, slowing down of network services)

are expected to occur in practice but their effect needs

to be minimized as much as possible. This is achieved

thanks to the locally installed images. Indeed, a node

that is experiencing problems can be rescued by an im-

mediate reboot into the rescue image. This mode of

operation is implemented making use of hardware and

software watchdogs that periodically check that certain

services are operational. One example is that, node-

controllers at each node periodically check connectivity

to the central node manager and when a disconnection is

detected, the node is rebooted to the rescue image within

60s. Note that since each node independently triggers a

switch to the rescue mode based on its own hardware

and software watchdogs, nodes do not go down all at the

same time limiting network disruptions. More details

on how experiment problems are detected can be found

in [9].

In the remainder of the paper, we focus on how we

addressed two main challenges: the development chal-

lenge of supporting multiple network configurations for

different researchers and the operational challenge of au-

thentication in the BOWL network.

4 A Development Challenge: Support-

ingMultiple Network Configurations for

Wireless Experimentation

One of the main goals of the BOWL project is to al-

low multiple researchers to create experiments, and be

able to run and repeat their experiments in a consis-

tent fashion. In the remainder of this section, we first

summarize the system that we started off with around

mid 2008, and describe how it evolved during the life-

time of the project. Essentially, the reliability of the

Operator domain

Researcher domain

oldest

v
e
rs
io
n
in
g

latest

rescue

guest #1

researcher #3

researcher #1

researcher #2

Figure 2: An example of how three researchers maintain

their own configuration in the BOWL network.

BOWL network was jeopardized due to several configu-

ration glitches and therefore, our complete software re-

write decisions were significantly affected by the need

to maintain network reliability at all times.

The node configuration of a given experiment con-

sists of two parts: (1) an operating system image and

(2) an experiment configuration. OpenWrt manages

the whole configuration of the operating system using

the universal configuration interface (UCI)[6]. We also

take advantage of the UCI. As the network is used for

very different purposes, it becomes necessary to main-

tain consistent network configurations across the users.

Therefore, initially, we had a configuration database and

stand-alone scripts to apply these configurations from

a central server manually. As more nodes were de-

ployed in the BOWL network, it became a necessity

to have a more scalable and manageable solution. To

this end, the existing node-manager and node-controller

framework was extended to support node configurations.

The important components to a BOWL user are: (i)

the web-based front-end to a configuration database,

and (ii) a client-server auto-configuration process that

runs in node-controllers and the node-manager, respec-

tively. The auto-configuration scheme was added af-

ter mid 2010 due to the several failures that occurred

with the earlier version. Figure 2 illustrates how, for in-

stance, three researchers maintain their configurations in

the BOWL system.

Using the web-based front-end, a researcher can pick

a configuration, image and the node partition to deploy

its experiment. From this step on, the user flashes his

own image to this partition and nodes are configured by

the auto-configuration process at boot time (or before the

image is booted). However, currently, a researcher still

needs to record the information about which image was

used with which experiment configuration. In the fu-

ture, we are planning to automate this lab bookkeeping



process. Finally, a reservation system prevents node and

image usage conflicts. Currently, the reservation system

used in BOWL is primitive, in the sense that the entire

network is reserved to a single researcher for a given pe-

riod of time. Each researcher is responsible of his image

and configuration and deploys this image to a given node

partition. Hence, merging of multiple images from dif-

ferent experimenters is not expected.

This framework, complete with a new auto-

configuration scheme, is in use since mid 2010 by the

BOWL group and visiting researchers, that also re-

motely access our network. We learned several lessons

since then, which resulted in the current state of the

framework as we use today. For instance, one issue

resulted from the inheritance of configurations in the

database. It was not obvious to us at the beginning that

researchers would have difficulties discovering the in-

heritance hierarchy. But some of our early users ap-

plied changes to the base configuration expecting them

to take effect in the descendant configuration. To avoid

such problems, we now expose the inheritance hierarchy

to the users of our system and visualize it in the web-

based front-end. Finding a right way to do this also was

a challenging task. Furthermore, being too accommo-

dating was not a good idea and we ended up limiting

the functionality of the web-based front-end. Earlier,

researchers could push a configuration to a given node

by just pressing a button. However, since installing im-

ages and configurations were separated from each other,

it sometimes resulted in applying a wrong configuration

to the wrong image. Therefore, we removed this func-

tionality from the front-end. Actually, this was the main

reason why an auto-configuration scheme was added to

the system. A final lesson learned was not to assume any

network stability during configurations. With our first

auto-configuration implementation, the nodes fetched

their configurations from the node-manager right after

booting. However, if there were any network instabil-

ities during this time, the watchdog would trigger and

interfere with the auto-configuration. We now avoid this

problem by having nodes first fetch their configurations

before booting the image, configure the image, and boot

only if all checks pass. While our development activ-

ities have slowed down as users become more used to

working with our framework, we are still looking into

simplifying things even further to lower the entry barrier

of using the BOWL network.

5 An Operational Challenge: Authentica-

tion in the BOWL network

In exchange of the rooftop usage and installation sup-

port, the BOWL project has contractual obligations with

TUB to provide wireless Internet access to staff and stu-

dents. Hence, we need to provide the usual authenti-

Figure 3: Logical diagram of the BOWL authentication

infrastructure.

cation and accounting services that would be expected

from any WiFi access network. To this end, we use the

widely deployed FreeRADIUS software [4], which is a

server implementation of RADIUS [10]. When a user

tries to authenticate to our network, the authenticator

(hostapd) at the WiFi access point communicates with

the RADIUS server. Using challenge-based protocols,

the RADIUS server determines whether credentials pro-

vided by a user are valid. Using the results from this

decision process, the access point either allows the user

to join the network or rejects him.

One of the main reasons that makes authentication in

the BOWL network a challenging task is the intercon-

nections with other networks and the need to provide ac-

cess to different type of accounts. FreeRADIUS does

support this by allowing access decisions based on local

account databases or using the results of requests prox-

ied to further upstream services, which may in turn again

be other RADIUS implementations or entirely different

services. Currently, the BOWL network needs to pro-

vide access for the following types of accounts (see Fig-

ure 3):

• TUB accounts as held by students and members

of staff in another RADIUS server, administered

by TUB. Access is provided using PEAP with

MSCHAPv2. The BOWL network does not hold

(or ever sees in any other way) passwords associ-

ated with these accounts, because it just proxies the

encrypted challenge and response messages.

• eduroam [3] access is provided by TUB using the



same scheme as described above. Accounting data

for this and the previous scheme are forwarded to

TUB.

• Accounts for the local department FG INET, ad-

ministered by the department of which BOWL is a

part. The upstream authentication service is a Ker-

beros installation. Access is provided using TTLS

with PAP, because this kind of upstream service

requires that the FreeRADIUS server handles the

passwords of the users.

• Local accounts for demonstration and guest access

purposes, administered by the BOWL network. Im-

plemented using PEAP with MSCHAPv2. Con-

trary to the previous schemes, all schemes available

as default settings in FreeRADIUS provide work-

ing options here. The credentials are held in a local

database.

• Experiment-specific accounts for researchers, ad-

ministered by the BOWL network. Implemented in

a vein similar to the local accounts. These special

accounts are available for us to be able to filter out

data about traffic generated for the purpose of ex-

perimentation from the accounting database.

From this list it follows immediately that support re-

quirements towards users tend to vary with upstream au-

thentication source. Administration and support com-

plexity inevitably increases rapidly with additional sup-

ported schemes. This complexity which results from the

highly interconnected nature of BOWL is only bound

to increase. For example, there are discussions whether

some parts of Deutsche Telekom Laboratories are to be

provided access to BOWL using a limited subset of the

accounts held in an Active Directory service. Also, there

are plans to move local accounts into a LDAP installa-

tion for centralized administration.

In the process of creating all these authentication in-

terconnections, we have learned that unlike some other

pieces of server software, FreeRADIUS makes it some-

what difficult to set up a fresh installation with self-

written configuration files, because of the inherent com-

plexity of the flow of authentication requests within the

server. The developers make a point of telling their users

to proceed only from the default settings, making small

incremental changes. Therefore, keeping the configu-

ration files in a version control system has proven to

be even more invaluable than with any other service.

In summary, FreeRADIUS setup and handling can be

daunting and time-consuming for the administrator who

works with it extensively for the first time. However, we

still feel that we have made the right choice. The soft-

ware is freely available under the terms of the GPL, it

works without any need for modification on the BOWL

network and it provides an extremely rich feature set.

Now, monitoring of availability of external authen-

tication services has become one of our major chal-

lenges, which requires working test accounts for those

services. Monitoring software like Nagios provides sup-

port for self-written plug-ins, but not all upstream ser-

vice providers are prepared to provide such accounts.

Testing installations are needed, but they are hard to re-

alize as they require testing configurations on live nodes.

Furthermore, the upstream providers may be required

to accept and serve requests from these testing instal-

lations. Also, obviously, it must be avoided that the ac-

counting database is not polluted by bogus/testing data.

All of this must be done carefully, as FreeRADIUS has

proven to be a piece of software to which configuration

changes need to be made with special care because of

unintentional interactions with other configuration sec-

tions.

One important consequence from not being able to

fully test and monitor external authentication services is

the loss of usage of the network. This is quite annoy-

ing when it is due to problems in external services that

we do not fully control. And loss of control is not just

a hypothetical scenario. During the spring of 2011, no

TUB users were able to authenticate to the BOWL net-

work. Local testing revealed that the reason did not lie

in the BOWL network installation; requests were passed

on to the upstream server correctly. The fact that all

authentication protocols in use are encrypted and state-

less made further debugging difficult. The hospitaliza-

tion of our main technical contact person at TUB, who

was also the only person knowledgeable about the RA-

DIUS configurations, at exactly this point in time put

another obstacle in our way to successfully resolve this

issue. Eventually, it was found that a server certificate

of one of the upstream servers had expired, leading to

rejection of user authentication attempts. Luckily, the

BOWL network bounced back from this incident, and

we observed a speedy uptake by users again shortly af-

terwards. The first power users returned the morning

after the upstream servers were fixed; the number of dis-

tinct users increased continuously and two weeks later,

the number of distinct users per day peaked.

The most that an operational team can do in these

cases is to rely on its own monitoring tools in order to be

able to find the source of problems as quickly as possi-

ble; and to build open and positive relationships with up-

stream operations teams that make communication and

collaboration as smooth as possible. We also noticed

that solving the problem was delayed due to the unavail-

ability of the only person with the know-how. Based on

this experience, on our side, we try to make sure that

the BOWL system knowledge is shared among multiple

people, who can handle issues independently.



6 Current State and Lessons Learned

To manage a live and experimental testbed is a signifi-

cant challenge, as one needs to keep both Internet users

and researchers happy. In this paper, we described the

auto-configuration and authentication solutions that we

run to be able to serve both communities.

We learned several lessons during this phase, which

we summarize as follows:

1. It is important to have complete and thorough docu-

mentation that details the know-how of the BOWL

project group. Using our system for the first time is

currently not trivial. Therefore, more time needs to

be invested in educating future users and simplify-

ing operation.

2. Early adopters of the BOWL framework proved

that people always find a way to use an interface

differently than you expect them to. Well-defined

user interfaces with less functionality turned out to

be much more useful than providing more function-

ality with specifications unclear to the user. There-

fore, it is better to design simple first, and add extra

functionality when only it is absolutely required by

the users.

3. While building the BOWL framework, we once

more realized how important user-friendly inter-

faces are. People should be exposed all the neces-

sary information to run the system correctly easily.

4. In a live network, network disruptions will hap-

pen. Therefore, all functionality should be de-

signed around issues that can rise from network in-

stability.

5. Our authentication problems showed that the most

important thing is to maintain a good contact with

all the parties that can affect operation. More than

expected, the problem lies outside our own net-

work, and we need to rely on problem solving skills

of the upstream service providers.

6. FreeRADIUS configuration changes should be

maintained in a version control system. This makes

it a lot easier to revert to a previously working ver-

sion.

7. The complexity of any important component of the

network, such as authentication services, is only

going to increase as the number of interconnections

increases. Being aware of this fact aids in the plan-

ning of upcoming changes and aids with the inte-

gration into previously existing configuration op-

tions.

8. Finally, we learned that it is essential not to create

information bottlenecks in a project team, and there

should always be multiple people who know how to

handle problems independently of others.

7 Acknowledgments

We thank Harald Schiöberg for the architecture of the

BOWL testbeds and the implementation of the origi-

nal BOWL software suite. This work was supported by

Deutsche Telekom Laboratories, in the framework of the

BOWL project.

References

[1] 802.11-2007 IEEE standard for information

technology-telecommunications and information

exchange between systems-local and metropolitan

area networks-specific requirements - part 11:

Wireless LAN medium access control (MAC) and

physical layer (PHY) specifications.

[2] Berlin Open Wireless Lab. http://www.

bowl.tu-berlin.de/.

[3] eduroam. http://www.eduroam.org/.

[4] FreeRADIUS. http://www.freeradius.

org/.

[5] OpenWrt. http://openwrt.org/.

[6] The UCI System. http://wiki.openwrt.

org/doc/uci.

[7] M. Al-Bado, A. Feldmann, T. Fischer, T. Hühn,

R. Merz, H. Schiöberg, J. Schulz-Zander, C. Sen-

gul, and B. Vahl. Automated online reconfigura-

tions in an outdoor live wireless mesh network. In

Proceedings of the ACM SIGCOMM Conference

(demo session), August 2009.

[8] M. Al-Bado, R. Merz, C. Sengul, and A. Feld-

mann. A site-specific indoor link model for real-

istic wireless network simulations. In 4th Interna-

tional Conference on Simulation Tools and Tech-

niques (SimuTools), 2011.

[9] R. Merz, H. Schiöberg, and C. Sengul. Design of

a configurable wireless network testbed with live

traffic. In Proceedings of TridentCom 2010, vol-

ume 46 of Lecture Notes of the Institute for Com-

puter Sciences, Social Informatics and Telecommu-

nications Engineering (LNICST), pages 189–198.

Springer, May 2010.

[10] C. Rigney, S. Willens, A. Rubens, and W. Simp-

son. Remote Authentication Dial In User Service

(RADIUS), 2000.

[11] N. Sarrar. Implementation and evaluation of an op-

portunistic mesh routing protocol. Master’s thesis,

Technische Universität Berlin, 2009.

[12] F. Sesser. A performance analysis of scalable

source routing (ssr) in real-world wireless net-

works. Master’s thesis, Technische Universität

München, 2011.


