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Abstract

Currently, researchers designing and implementing large-
scale overlay services employ disparate techniques at
each stage in the production cycle: design, implemen-
tation, experimentation, and evaluation. As a result,
complex and tedious tasks are often duplicated leading
to ineffective resource use and difficulty in fairly com-
paring competing algorithms. In this paper, we present
MACEDON, an infrastructure that provides facilities to:
i) specify distributed algorithms in a concise domain-
specific language; ii) generate code that executes in
popular evaluation infrastructures and in live networks;
iii) leverage an overlay-generic API to simplify the inter-
operability of algorithm implementations and applica-
tions; and iv) enable consistent experimental evaluation.
We have used MACEDON to implement and evaluate a
number of algorithms, including AMMO, Bullet, Chord,
NICE, Overcast, Pastry, Scribe, and SplitStream, typi-
cally with only a few hundred lines of MACEDON code.
Using our infrastructure, we are able to accurately repro-
duce or exceed published results and behavior demon-
strated by current publicly available implementations.

1 Introduction

Designing and implementing robust, high-performance
networked systems is difficult. Overcoming this diffi-
culty is increasingly important as an ever larger fraction
of the world’s infrastructure comes to rely upon net-
worked systems. Challenges include network and host
failures, highly variable communication patterns, race
conditions, reproducing bugs, and security. While the

∗This research is supported in part by the Na-
tional Science Foundation (EIA-9972879, ITR-0082912),
Hewlett Packard, IBM, Intel, and Microsoft. Addi-
tional information is available on the MACEDON website:
http://www.cs.duke.edu/∼razor/MACEDON.

†Now a student at Georgia Institute of Technology,
sooraj@cc.gatech.edu

‡Supported by NSF CAREER award (CCR-9984328).

advent of higher-level programming languages such as
Java has raised the level of abstraction and somewhat
eased this burden, most programmers are still faced with
the daunting task of re-inventing appropriate techniques
for dealing with asynchronous, failure-prone network en-
vironments known by a handful of elite programmers.

We seek to explore the appropriate programming mod-
els and development environments with the twin goals
of: i) making it easier to advance the state of the art
in building robust networked systems, and ii) bringing
this state of the art to programmers at large. While
this is an ambitious effort, this paper attempts to un-
cover some of the relevant issues by focusing on pro-
gramming language and runtime support for designing,
implementing, and evaluating an emerging class of dis-
tributed services, overlay networks. We initially fo-
cus on a few types of overlays (distributed hash ta-
bles, DHTs, [22, 25, 30] and application-layer multi-
cast [6, 9, 12, 16, 23, 24, 31]), though we believe our
framework is applicable to other classes of overlays such
as indirect routing (e.g. RON [2]), 6Bone, and BGP.

We view current overlay research as following a cycle con-
sisting of four phases, each of which suffers from a num-
ber of challenges. First, an overlay researcher designs
an algorithm that optimizes for network metrics such
as latency and provides for application behavior such as
O(lg n) routing hops in DHTs. In the second phase, one
or more implementations are created to evaluate algo-
rithm performance. For example, many researchers cre-
ate hand-crafted simulators for evaluating performance
under scale and live implementations for evaluation in
real settings. Creating such implementations is often te-
dious and difficult, both due to the size of software com-
ponents needed and the complexity of such functionality.

Using an algorithm’s implementations, researchers use
experimentation to gather run-time performance data
in the third phase. Usually, this includes both sim-
ulation (such as with the network simulator, ns [29])
and small-scale live Internet runs (e.g. PlanetLab [19]).
Unfortunately, custom simulation does not capture the
full intricacies of network behavior such as congestion



and queuing. While ns might address this shortcom-
ing, it faces scalability limitations beyond a few hundred
nodes, making overlay evaluation problematic. Live de-
ployment certainly provides an existence proof, but does
not enable evaluation under scale or highly dynamic con-
ditions. The final phase, evaluation, involves processing
the information generated through experimentation us-
ing hand-crafted tools. Researchers subsequently mod-
ify their implementations in light of code bugs or sub-
optimal performance. They employ disparate implemen-
tation techniques, causing the evaluation of competing
overlays to reflect differences in implementation method-
ologies rather than in algorithmic principles and design.

To address these limitations, we present MACEDON,
an infrastructure to simplify the design, development,
evaluation, and comparison of large-scale overlays. In
MACEDON, researchers specify algorithm behavior in
terms of event-driven finite state machines (FSMs) con-
sisting of system states, events (e.g. message reception,
remote node failure, etc.), and transitions indicating the
actions to take in response to events. From this high-
level specification, MACEDON generates code for a vari-
ety of experimentation infrastructures leveraging shared
(but extensible) libraries. The libraries implement much
of the base overlay maintenance functionality, such as
thread and timer management, network communication,
debugging, and state serialization. As such, improve-
ments in system support can be equally applied to all
protocols. Ultimately, these system mechanisms enable
fair comparisons of the merits of individual algorithms

rather than artifacts of particular implementations.

MACEDON currently generates native C++ that runs
unmodified in live Internet settings, including Plan-
etLab, and the ModelNet large-scale network emula-
tor [27]. ModelNet enables us to subject overlays of
thousands of nodes to the characteristics of large network
topologies, capturing both scale and realism. MACE-
DON eliminates the need to maintain multiple versions
of the same algorithm for different evaluation infrastruc-
tures. We provide built-in support for tracking popular
overlay evaluation metrics, such as average delay penalty,
communication overhead, and communication stretch.
Our evaluation tools enable researchers to gain deeper
understanding into the complex behavior of their algo-
rithms, thus closing the streamlined development cycle.

To validate the utility of our approach, we have im-
plemented of a number of overlays in the MACE-
DON framework. We have leveraged MACEDON to
guide our design of AMMO [21] and Bullet [16]. Our
MACEDON implementations also include Chord [25],
NICE [4], Overcast [13], Pastry [22], Scribe [24] and
SplitStream [6]. Here, we compare our generated code
with published results and publicly available implemen-

tations. Our comparison indicates that MACEDON is
able to reproduce or exceed performance of these sys-
tems, with concise system descriptions consisting of a
few hundred lines. Using a standard API, applications
and protocols coded to services of one overlay may eas-
ily switch to another providing similar functionality. For
instance, the Scribe application-layer multicast proto-
col can be switched from using Pastry to Chord by
changing a single line in its MACEDON specification.
In isolation, our protocol implementations constitute an
important contribution: the validation of results pub-
lished separately by other authors. Taken together, they
demonstrate the generality and utility of the MACE-
DON framework for developing and comparing overlays.
Over time, we hope that code for a wide variety of over-
lays will become publicly available, further lowering the
barrier to experiment with new ideas in this space.

This paper is organized as follows. We define overlays
in terms of an abstraction in Section 2. Section 3 gives
details of overlay implementation using the MACEDON
language. We present validation of our methodology in
Section 4. Section 5 compares MACEDON with other
implementation infrastructures and describes other re-
lated work. We conclude with future work in Section 6.

2 Overlay Abstraction

We seek to provide a representation of distributed algo-
rithms that is expressive enough to characterize the intri-
cacies of different protocols, yet simple enough to facil-
itate implementation. To this end, we identify common
characteristics of overlays and describe our FSM-based
approach of describing them. We show how we use this
unifying abstraction to enable concise descriptions of a
wide array of network protocols. While it is not feasible
to prove that all overlays share these characteristics, we
have yet to encounter one that does not.

At a high level, an overlay network is a distributed algo-
rithm where nodes establish logical peer or neighbor rela-
tionships with some subset of global participants forming
a logical network overlayed atop the IP substrate. Ex-
amples include advanced communication semantics pro-
vided by multicast overlays and network maintenance as
performed by BGP routers. A subset of these overlays
export APIs that allow applications to transmit data
through them. Our initial MACEDON implementation
focuses on these algorithms, though we note that MACE-
DON is a generic framework for developing a wide vari-
ety of distributed systems. In particular, our initial work
targets distributed hash tables (DHTs) and application-
level multicast, described further in Section 5.



2.1 FSM representation

Overlay nodes maintain local state regarding their cur-
rent activities and communicate with neighbors through
control messages. They use periodic timers to sched-
ule future processing and may receive application com-
mands instructing them to perform an operation. The
fundamental premise of our approach is that these char-
acteristics can be succinctly described by event-driven
finite state machines (FSMs). In this model, events such
as message reception, scheduled completion of timers,
and application commands, trigger the overlay protocol
to perform protocol actions. Actions include setting lo-
cal node state, transmitting new messages, scheduling
timers, and delivering application data, though this is
not an exhaustive list. Events may occur nearly simulta-
neously, perhaps requiring the serialization of local state.
In addition, events may cause the protocol to move from
one system state, or phase of execution, to another. Be-
havior toward an event while in a certain system state
may be different when in another state. In summary,
we believe that we can sufficiently capture an overlay’s
intricate behavior by describing its system states, local
node state, events, and the response to these events in
this FSM framework. The following subsections describe
the components of the MACEDON FSM abstraction.

2.1.1 Node state

Each overlay node maintains local state describing its
current position and activities. Local state determines
each node’s relationship to current neighbors. For exam-
ple, a tree-based overlay (e.g. Overcast) will have parent
and children neighbors. The behavior of the node toward
a peer may be different depending on its peer type. It
may also maintain a list of potential peers to establish
future peer relationships. This functionality is not re-
quired in certain overlays, when nodes either establish a
peer relationship with or delete any knowledge of a po-
tential peer. In other overlays, such as RON [2], such
state may include a list of all nodes present in the over-
lay. Node state may also include specialized information
that identifies characteristics about this node’s position
in the overlay. Examples include bandwidth estimates to
neighbor nodes as in Overcast [13] and routing tables in
DHTs. We term this type of node state state variables.

In addition, algorithms have system states that repre-
sent high-level phases of processing. For example, upon
initialization, a node in the overlay may enter a“joining”
phase where a join request message is transmitted to a
node already in the overlay. A “probing” state could be
where nodes probe a certain population of overlay par-
ticipants, for instance, to reduce latency in the overlay.

2.1.2 Events

In our target systems, asynchronous events move a node
from one system state to another, performing subsequent
actions such as sending a message. Events include timer
expirations, message reception, and API function calls.
In message reception, a node processes the message, per-
forming appropriate actions in response. For instance, a
node receiving a join request may attempt to add the
joining node as its neighbor.

When a scheduled timer expires, the node performs func-
tions appropriate to this timer. For example, a NICE [4]
node schedules timers to check protocol invariants. If a
node cluster is unsuitably large or small, the node ini-
tiates a cluster split or merge. The node would change
its system state and perform a number of coordinating
actions. In another event, an application issues com-
mands to the overlay. Upon receiving the call, the node
may change its state and perform appropriate actions.
Application commands fall into two categories, control
commands for administrative operations and data com-
mands for transmitting data through the overlay.

The distinction between control and data operations
is central to MACEDON’s handling of asynchronous
events. Control operations modify node state and are
exclusively serialized within a protocol instance. Data
operations simply read node state, enabling shared pro-
tocol access. In MACEDON, events may occur simulta-
neously. For example, an application may spawn multi-
ple threads, each of which can make an API call (con-
trol or data) into the overlay instance, thereby leading
to potential race conditions. Likewise, multiple timer
and transport threads may execute simultaneously. By
allowing multiple data operations to proceed simulta-
neously, MACEDON exploits the advantages of multi-
threaded programming to achieve superior performance
in delivering data through the overlay.

Overlay developers classify transitions as control (requir-
ing write access to node state) or data (only read access).
Using this classification, we determine the proper level of
protocol instance locking on a per-transition basis. Each
instance is secured with a read/write lock. Control oper-
ations secure the lock exclusively for writing, while data
operations use read locking to allow multiple threads to
execute in parallel, increasing performance when work-
ing threads block or a multi-processor is available.

2.1.3 Actions

A transition, representing a series of related actions, is
uniquely identified by (event, FSM state). That is, the
current system state determines an algorithm’s response
to specific events. For example, once a node has joined
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Figure 1: Portion of the Overcast algorithm representation. Circles represent FSM states. Directed edges identify
transitions, with events as unshaded text and actions in shaded text boxes.

an overlay, it may transition from the joining phase and
transmit a confirmation. Actions include scheduling a
timer, transmitting a message, and changing node state.
Overlays also employ periodic timers to execute overlay
maintenance, check invariants, or some other periodic
action. For example, Chord periodically checks and re-
pairs its routing (finger) table entries.

Messages provide the fundamental mechanism for coor-
dinating distributed actions and transmitting data. In
Chord, a node transmits route repair requests to its
neighbors. Chord nodes also transmit data messages
through the overlay enabling application-to-application
communication. Finally, an overlay protocol specifies
which state variables change upon an event. In Chord,
a node gathers route replies to determine if its route en-
tries are stale, and if so, updates them accordingly.

2.1.4 An example: Overcast

An overlay’s FSM behavior is specified in a mac file. To
aid specification, it is helpful to first describe the high-
level behavior of the algorithm graphically, as illustrated
in Figure 1. The figure shows Overcast’s [13] five system
states and associated transitions. The protocol begins in
the “init” state from which it transitions to the “joined”
state if this node is the bootstrap node (i.e. the desig-
nated root of the overlay). Otherwise, it transmits a join
request to the bootstrap. A joined node (including the

bootstrap) receiving a join request will add the incoming
node to its child neighbor list and transmit a join reply
to confirm the process. Upon receiving the join reply, the
joining node stores its new parent in its parent neighbor
list and transitions to the “joined” state.

The Q timer allows joined nodes to periodically evaluate
their position. When the timer expires, a node initiates
probes from its grandparent and siblings (we omit the
details of how a node acquires this information) and en-
ters the “probed” state. It uses a state field to count the
number of nodes probing it. Upon receiving a probe re-
quest, nodes send equally-spaced probes at some defined
rate using the Z timer. Once all probes are transmitted,
the probing node transmits the probe reply and returns
to the “joined” state. After the probed node gathers the
necessary replies from all nodes (count=0), it decides
whether it should move to a new parent. If it moves, it
again enters the “joining” state and sends a join request
to the new parent. Otherwise, it simply returns to the
“joined” state. Section 3 describes how this high-level
representation is captured in the Overcast mac file.

2.2 The MACEDON API

Overlay algorithms typically target specific types of ap-
plications. An important characteristic of their imple-
mentation is the API they export. For example, a mul-
ticast overlay must export a send function to disseminate



Multicast/DHT application

MACEDON API

Bullet

DHTs

Chord/Pastry

Scribe

Network substrate (TCP/IP, ns)

Split
Stream

MACEDON API

MACEDON API

MACEDON API

O
vercast

N
IC

E

A
M

M
O

R
andT

ree

Figure 2: The MACEDON protocol stack.

data through the overlay. While sometimes obfuscated
in design, we believe it is imperative for overlay imple-
mentations to provide appropriate APIs to application
developers. A number of recent efforts [10, 22] have made
initial steps at creating a single, standard API. We adopt
an API similar to [10] and further enable API extensi-
bility for protocol-specific functionality.

A standard API enables MACEDON applications to se-
lect underlying overlays without modification. In gen-
eral, overlays support multicast or route primitives that
route data from a source to destination(s) through the
overlay. Typically, overlays provide upcalls at each
routing hop so that intermediate nodes can perform
application-specific functionality. For example, an in-
termediate Scribe node receiving a join request for a
group will add the group to its list of multicast sessions
and propagate the request toward the destination, thus
building a reverse-path distribution tree.

Protocol layering (Figure 2) is central to implement-
ing algorithms in MACEDON. The MACEDON proto-
col stack is divided into three components: application,
multiple protocol layers, and network substrate (ns or
TCP/IP). Much like the TCP/IP stack, higher layers
in MACEDON use the services of lower layers. Bullet,
for example, uses a simple randomly constructed tree,
RandTree, for baseline data distribution.

Figure 3 illustrates a simplified version of the API that
MACEDON overlays export. We provide an extensi-
ble upcall and downcall mechanism to perform protocol-
specific collaboration across layers in the stack. As
instances of this mechanism, we describe forward(),
deliver(), and notify() (extensible upcalls are han-
dled using the generic handler). A node calls forward()

typedef int (*macedon_forward_handler)

(char *msg, int size, int type,

int nextHop, macedon_key nextHopKey);

typedef void (*macedon_deliver_handler)

(char *msg, int size, int type);

typedef void (*macedon_notify_handler)

(int type, int size, int *neighbors);

typedef int (*macedon_upcall_handler)

(int operation, void *arg);

macedon_init(macedon_key bootstrap, int prot);

void macedon_register_handlers(

macedon_forward_handler,macedon_deliver_handler,

macedon_notify_handler,macedon_upcall_handler);

int macedon_create_group(macedon_key groupID);

void macedon_join(macedon_key groupID);

void macedon_leave(macedon_key groupID);

int macedon_route(macedon_key dest, char *msg,

int size, int priority);

int macedon_multicast(macedon_key groupID,

char *msg, int size, int priority);

int macedon_anycast(macedon_key groupID,

char *msg, int size, int priority);

int macedon_routeIP(int dest, char *msg,

int size, int priority);

Figure 3: Simplified MACEDON API.

once it makes a message routing decision. Intermediate
nodes can change the message or its destination or quash
the message altogether. The notify() upcall allows
lower-layer protocols to inform higher layers of changes
in neighbor lists (a higher layer may require this direct
knowledge). An application optionally registers its up-
call handlers with the macedon_register_handlers()

function. At least one handler is necessary if the appli-
cation is to receive any data through the overlay (having
null handlers would be used when evaluating just the
construction process of different overlays).

Figure 3 also shows macedon_init() that initializes
an overlay identified by the application-specified well-
known protocol value (akin to protocol values in IP).
Once an application initializes and registers its han-
dlers, it can send and receive data. For unicast data,
the overlay must implement routing functionality that
determines which neighbor receives data packets next.
The macedon_route() function accepts a message and
destination in the form of a macedon key, meaning it
is not necessarily an IP address (it could be a hash
of an IP address or name). A similar primitive is
macedon_routeIP() that enables native IP-based com-
munication with an IP host.

Multicast primitives include macedon_create_group()

to create sessions. Its sole input is the value, or han-
dle, associated with the session (group). Receivers
join and leave a session with macedon_join() and



<PROTOCOL SPECIFICATION>: <HDRS>

<STATE AND DATA><TRANSITIONS><ROUTINES>(0,1)

<HDRS>: "protocol" <name> ["uses" <base>](0,1)

"addressing " ["hash"|"ip"]

"trace_" ["off"|"low"|"med"|"high"]

<STATE AND DATA>: <CONSTANTS> <STATES>

<NEIGHBOR TYPES> <TRANSPORTS>(0,1)

<MESSAGES> <STATE VARS>

<STATES>: "states { " [<name> ";"]* "}"

<TRANSPORTS>: "transports {" <TRANSPORT>+ "}"

<TRANSPORT>: ["TCP"|"UDP"|"SWP"] <name> ";"

<MESSAGES>: "messages {" <MESSAGE>* "}"

<MESSAGE>: <transport name>(0,1) <name>

"{" <MESSAGE FIELDS>* "}"

<STATE VARS>: "auxiliary data {"

[<LOCAL VAR>|<NEIGHBOR VAR|<TIMER VAR>]*"}"

<NEIGHBOR VAR>: "fail_detect"(0,1) <name>

<size>(0,1) <size>(0,1) ";"

<TIMER VAR>: "timer" <name><period>(0,1) ";"

<TRANSITIONS>: "transitions {"[<STATE EXPR>

[<API TRANS>|<TIMER TRANS>|<MESSAGE TRANS>]

<TRANS OPTIONS> "{" <code> "}"]* "}"

<API TRANS>: "API " <API TYPE>

<API TYPE>: "init"|"route"|"routeIP"|

"multicast"| ... |"join"|"upcall_ext"

<TIMER TRANS>: "timer" <name>

<MESSAGE TRANS>: ["forward"|"recv"] <message>

Figure 4: MACEDON grammar highlights.

macedon_leave(), specifying the group value. Similar
to macedon_route(), macedon_multicast() requires a
session’s ID instead of a node’s destination address.
macedon_collect() introduces a new primitive to tradi-
tional overlay APIs. It essentially performs the opposite
of multicast, where data originates at non-root nodes and
is collected via the distribution tree toward the root. In-
termediate nodes can summarize data in an application-
specific manner, ultimately delivering a global summary
to the tree’s root. We believe that a number of applica-
tions could benefit from this communication paradigm.

3 MACEDON Framework

This section describes how a developer can specify over-
lay behavior in MACEDON. We give an overview of the
language and discuss its expressiveness. We also describe
how MACEDON captures subtle implementation details
that greatly influence overlay performance.

3.1 Grammar Overview

Figure 4 highlights the MACEDON language gram-
mar. It allows a developer to define a PROTOCOL

SPECIFICATION that MACEDON translates into work-
ing code. There are three main headers in mac file. The
protocol header specifies the name of the protocol and
optionally a base protocol for layering. For example, one
could specify “protocol scribe uses pastry” to run Scribe
over Pastry, or “protocol scribe uses chord” to change
the underlying DHT. In this manner, one could perform
a direct comparison between the two DHTs in support
of application-layer multicast. The addressing header
specifies whether the protocol uses IP- or hash-based ad-
dressing. One could add other types of addressing, for
example, to test new hashing algorithms or node iden-
tifier schemes. The tracing header can be set to any of
four increasing levels of automatic tracing.

The STATE AND DATA section includes definitions of
states, neighbor types, transports, messages, and state
variables. The STATES portion defines the allowed set
of protocol FSM states. The “init” state is automat-
ically generated as the starting state for all protocols.
For Overcast, state definitions are: (refer to Figure 1):

states { joining; probing; probed; joined; }

The NEIGHBOR TYPES section specifies the sets of neigh-
bors the protocol tracks (and their maximum number).
Neighbor types may specify optional fields, such as delay,
to track on a per-neighbor basis. Note that a field might
itself be a set of neighbors. Returning to our example,
Overcast nodes have parent and children neighbors:

neighbor_types {

oparent 1 { ... // fields omitted }

ochildren MAX_CHILDREN { ... // fields omitted }

}

The protocol also specifies persistent state variables. In
addition to standard language types, neighbor sets, and
multidimensional arrays of such types, state variables
can specify timers with a specified expiration period.
A neighbor list may be labeled “fail detect”, instruct-
ing MACEDON to monitor these neighbors for failure.
Upon detecting failure, MACEDON will invoke an over-
lay’s error API transition. Our Overcast specification
includes the following state variables:

state_variables {

oparent papa; // parent neighbor

ochildren kids; // children neighbors

oparent grandpa; // grandparent neighbor

ochildren brothers; // sibling neighbors

int probed_node; // node we are probing

int probes_to_send; // count of probes left

timer keep_probing; // timer Z

timer probe_requester; // timer Q

... // fields omitted for brevity

}

In MACEDON, the lowest-layer protocol specifies the
transports it uses and associates transport instances with
each message via TRANSPORTS and MESSAGES definitions.
Messages may contain many fields, including standard



language types and neighbor sets. Communication in
MACEDON can be reliable, congestion-friendly (using
TCP), unreliable, congestion-unfriendly (using UDP),
or reliable, congestion-unfriendly (using a simple sliding
window protocol, SWP). It is sometimes advantageous
to use multiple blocking transports (e.g. TCP) of the
same type. This is particularly evident when one mes-
sage has higher priority than another. If the transport
is blocked sending low priority messages, it is unable
to send any available high priority messages until the
connection is unblocked. By defining multiple transport
based on priority, this problem is easily overcome. For
example, Overcast includes:

transports {

SWP HIGHEST;

TCP HIGH;

TCP MED;

TCP LOW;

UDP BEST_EFFORT;

}

messages {

BEST_EFFORT join { }

HIGHEST join_reply { int response; }

HIGHEST probe_request { ... // fields omitted }

}

Overcast includes three TCP transports, as well as one
SWP and one UDP, and associates each message to the
appropriate transport. In higher layers, a specification
associates messages with a default service class or prior-
ity. A higher layer invokes the layer below to transmit
the message, passing the desired priority along with it.
The lower layer determines how to process the message
at the given priority.

The TRANSITIONS section describes the bulk of an over-
lay’s behavior. The developer uses a set of MACEDON
primitives to describe the actions that result from trig-
gered events. All transitions are scoped by a FSM state
expression, thereby allowing a protocol to specify differ-
ent behavior based on its current system state. A de-
veloper may specify transition-specific options, such as
write versus read serialization (write semantics are as-
sumed by default). There are three types of transitions:
API, timer, and message. While our Overcast specifi-
cation is too large to include here, we summarize a few
transitions (with actions removed for brevity):

transitions {

any API route [locking read;] { ... }

probing timer keep_probing [locking read;] { ... }

!(joining|init) recv join { ... }

}

An API transition enables layers to communicate with
layers directly above and below in the MACEDON stack.
The “init” API is called by a higher layer to initialize
protocol state and schedule necessary timers. “route”,
“routeIP”, “multicast”, “anycast”, and “collect” repre-
sent requests to transmit data. Our example shows the

declaration of Overcast’s route API with read locking se-
mantics. “create group”, “join”, and “leave” are control
calls for managing multicast session state. The remain-
ing API calls represent atypical or extensible calls into
the code, including notifying upper layers of a changed
neighbor set, generic “upcall ext” and “downcall ext” to
provide extensible specification of layer-to-layer collabo-
ration, and failure detection (“error”). Our current im-
plementation assumes the failure of a peer node if no
message has been received from it in f seconds, a con-
figurable parameter. If communication has ceased for
g < f seconds (another parameter), MACEDON triggers
a heartbeat request/response sequence to solicit com-
munication. Appropriate failure detection is an ongoing
area of research. We consider MACEDON to be an ap-
propriate framework for such research.

A timer transition occurs upon a timer expiration. In
Overcast, the “keep probing” timer fires when a node
is transmitting probes. In this case, the node is in the
“probing” state and follows read locking semantics since
no node state is modified within the transition. Finally,
a message transition is called in response to message re-
ception. In addition to state scoping, these transitions
are scoped by message type, enabling different transi-
tions for different messages. In MACEDON, messages
are delivered (this is the final destination) or forwarded

(this node should forward the message). In our exam-
ple, we have specified a join message reception when
the state matches the expression “!(joining|init)”,
i.e. the Overcast node is in “joined”, “probing”, or
“probed” states. This transition modifies state variables
and makes use of the default write locking semantics.

3.2 Code Generation

MACEDON generates API-consistent code, termed the
MACEDON agent, from an algorithm’s specification.
MACEDON parses a specification and translates it into
executable C++ code that uses library functions and the
MACEDON code engine including timer and transport
subsystems (we also have partial support for generating
ns code for better reproducibility of results). The en-
gine and code libraries are common to all overlay imple-
mentations, increasing evaluation consistency and code
reuse. While our current infrastructure does not yet sup-
port other programming languages such as Java, it is the
subject of ongoing work.

The translation phase involves the declaration of pro-
tocol messages, states, neighbor types, state variables,
and transitions. We create a demultiplexing function
to receive data packets from a MACEDON interoper-
ability layer that in turn interfaces with ns or native
TCP/IP sockets. Upon receiving a message, the demul-
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Figure 5: MACEDON agents.

tiplexing function calls the appropriate transition func-
tion based on the node’s current state and the mes-
sage type. MACEDON translates API specifications and
timer transitions in much the same way.

Figure 5 outlines the resulting structure of MACEDON
agents. MACEDON subsystems are implemented with
thread pools that process timer and transport events.
Along with application threads, they invoke transitions
in agents. Timers can be employed by any layer in
the MACEDON stack. However, only the lowest-layer
agent may interact directly with the transport subsys-
tem. Likewise, only the highest-layer agent interacts di-
rectly with the application. Though this example only
shows two layered agents, MACEDON supports layering
an arbitrary number of agents.

3.3 Specifying Actions

This section describes how an overlay developer in-
vokes transition actions in MACEDON. While this could
be done solely in the target programming language
(i.e. C++), MACEDON provides libraries for invoking
commonly-used actions, including the necessary func-
tions to interface with our timer and transport subsys-
tems as well as invoking cross-layer upcalls and down-
calls. The MACEDON library collection is extensible,
allowing users to add their own library routines. For ex-
ample, we have created a library that manipulates bloom
filters. The remainder of this section describes support
for other commonly-used actions based on a sample tran-
sition of the Overcast specification, given in Figure 6.
Line 2 of our sample transition shows how to access the
“response” field of the incoming “join reply” message.

1 joining recv join_reply {

2 if (field(response) == 1) {

3 if (neighbor_size(papa)) {

4 neighbor_oparent *pops =

5 neighbor_random(papa);

6 route_remove(pops->ipaddr, 0, 0, -1);

7 neighbor_clear(papa);

8 }

9 neighbor_add(papa, from);

10 state_change(joined);

11 timer_resched(probe_requester, PINT);

12 neighbor_oparent *pops =

13 neighbor_random(papa);

14 if (neighbor_query(brothers, from)) {

15 neighbor_ochildren *newp =

16 neighbor_entry(brothers, from);

17 pops->delay = newp->delay;

18 }

19 upcall_notify(papa, NBR_TYPE_PARENT);

20 }

21 else {

22 if (neighbor_size(papa)) {

23 state_change(joined);

24 }

25 else { ... // omitted }

26 }

27 }

Figure 6: A sample Overcast transition.

Perhaps the most basic action specified within transi-
tions is in changing system state, as specified in lines 10
and 23. Line 11 shows how we invoke the MACEDON
timer subsystem to schedule a timer event. Finally, we
demonstrate an upcall invocation in line 19.

3.3.1 Transmitting Messages

Overlay protocols transmit messages via lower layers (or
underlying network substrate). MACEDON has built-in
transmission primitives of the form:
〈API〉 〈msg〉(〈dest〉, 〈fields〉, 〈buffaddr〉, 〈buffsize〉, 〈pri〉)

Line 6 of our sample Overcast transition illustrates how
we transmit the remove message to our “old” parent once
we have determined that a move will occur. By specify-
ing a buffer address and size of zero, this message will not
be appending application data. Finally, the -1 priority
requests use of the message’s default transport.

3.3.2 Neighbor Management

MACEDON provides primitives to simplify neighbor
list management. Our sample transition makes heavy
use of these facilities. Lines 3 and 22 illustrate the
neighbor_size function that returns the size of a neigh-



bor list. Line 9 adds a neighbor while line 7 shows how
to clear a neighbor list. Neighbor lists can be queried as
in line 14 (“from” is the source address of the inbound
“join reply” message) and accessed directly as in line 16.
Finally, lines 5 and 13 illustrate selecting a random entry
from a neighbor list.

Typically, overlays compare potential edges along some
performance metric, such as round-trip time (e.g.,
NICE). Overcast estimates bandwidth by measuring the
delay associated with receiving some number of probes
at a sustained bandwidth. Line 17 shows how neighbor
entries store this information. Additional neighbor entry
fields could be maintained in such a manner.

3.3.3 Explicit Thread Serialization

While locking behavior is specified on transition declara-
tions, an overlay developer may required explicit access
to an agent’s (protocol instance) lock. That is, condi-
tions under which locking is required may depend on
intricate behavior within the transition itself. In this
case, the transition could employ the Lock_Write(),
Lock_Read(), and Unlock() primitives. In our expe-
rience, however, transition-based locking has been ade-
quate for all the overlays we have considered.

4 Evaluation

In this section, we evaluate MACEDON’s ability to: i)
facilitate overlay design, implementation, and evalua-
tion, ii) implement a broad range of algorithms with
good performance and scalability characteristics, and iii)
enable comparisons of competing overlay technologies.
While it is not practical to prove that MACEDON will be
able to meet the demands of all distributed algorithms,
we use our success with of a broad variety of modern
overlays to support our goal of qualitatively improving
the way overlay research is conducted.

4.1 Expressiveness

One key contribution of this work is the implementation
and validation of a broad range of network overlays in the
MACEDON environment, including: AMMO [21], Bul-
let [16], Chord [25], NICE [4], Overcast [13], Pastry [22],
Scribe [24], and SplitStream [6]. Figure 7 summarizes
the lines of code (LOC) counts for each of these MACE-
DON specifications. NICE, being a more complex pro-
tocol than all others required approximately four weeks
of skilled programmer’s time to implement and debug.
Its MACEDON specification is approximately 500 LOC
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Figure 7: Lines of code used in various algorithm speci-
fications.

while its generated C++ code is over 2500. The MACE-
DON operating environment is around 3500 LOC, yield-
ing an estimated total of 6000 C++ LOC to completely
implement NICE from scratch.

On the other end of the spectrum, SplitStream’s MACE-
DON specification is under 200 lines of code, primarily
because SplitStream, being layered on top of Scribe and
Pastry, exploits functionality provided by those systems.
Implementing SplitStream also required small changes
to our Scribe implementation, primarily since the de-
scription of SplitStream [6] requires changes to Scribe’s
“pushdown” function. Though SplitStream and Scribe
are originally designed to run over Pastry, we note that
MACEDON’s layering feature in conjunction with its
standard API allows us to switch underlying DHT layers
easily. For instance, while our experiments show results
for SplitStream running over Pastry, we are currently ex-
perimenting with using Chord as the underlying DHT.

4.2 Validation

This section provides validation of a subset (abbreviated
for space reasons) of our MACEDON-generated imple-
mentations as compared to published results or freely
available code distributions (MIT’s lsd Chord [17] and
FreePastry [20]). We further note that results included
in [16] and [21] were achieved through MACEDON using
the mac specifications described in this paper.

We believe that our results confirm the generality, accu-
racy, and performance of our infrastructure. We use the
ModelNet [27] infrastructure to emulate large-scale In-
ternet topologies, capturing hop-by-hop congestion and
queuing behavior. For our NICE validation, we used ex-
tracted information from [4] to re-create the authors’
Internet-like topology. Our evaluation infrastructure
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allows us to extract features of the resulting overlay
by using ModelNet routing and topology information.
For all other experiments, we use 20,000-node INET [8]
topologies with varying numbers of clients (200–1000).
In all cases, we run our experiments on (2–50) 1.4Ghz
Pentium-III machines running Linux 2.4.23. We multi-
plex multiple node instances on these machines. All traf-
fic passes through our 1Ghz Pentium-III ModelNet cores
running FreeBSD-4.9. While all results in this paper use
ModelNet, we note that we have successfully run smaller
experiments (50+ nodes) over PlanetLab [19] (refer to
[16] for sample results).

4.2.1 NICE

To validate our implementation of NICE, we run the
same experiments described in [4] for small-scale Inter-
net scenarios (64 nodes) and compare our results with
the published values. Figures 8 and 9 show the average
observed stretch and latency for NICE nodes in each of
eight different Internet sites as reported in Figures 15
and 16 in [4] versus our MACEDON implementation.
We slightly offset the MACEDON values to the right for
clarity. Our results closely match the published results,
with only a minor discrepancy in one of the sites. We be-
lieve this is due to our implementation lacking the probe
time binning strategy presented in [4], though adding
this to our implementation is straightforward.

4.2.2 Chord

We validated our MACEDON Chord implementation by
comparing it to the MIT distribution, lsd. We used a
20,000-node INET topology with 1000 Chord partici-
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Figure 9: Observed latencies for published and MACE-
DON NICE implementations.

pants for this experiment. We made two modifications
to the MIT code to first dump all routing tables every
two seconds (something already available in the MACE-
DON implementation via debugging features) and to
use a smaller hash function, since our implementation
of Chord only uses a 32-bit hash address space (nodes
hash to the same hash address in MACEDON and lsd).
We calculated correct routing tables for each node given
global knowledge of all nodes joining the system.

Figure 10 shows the convergence of routing tables to-
ward the correct values over time (averaged per-node)
for MACEDON and lsd. The graphs shows two MACE-
DON curves, corresponding to two different settings of
the “fix fingers” timer. This timer triggers Chord to
route a repair request message to a random finger (rout-
ing) table entry. The ultimate destination of this mes-
sage responds, allowing the requesting node to verify
the correctness of that route entry. While the lsd code
dynamically adjusts the period of the fix fingers timer,
our current MACEDON implementation only supports
static periods (1 and 20 seconds in this experiment).

The optimal strategy for dynamically adjusting proto-
col parameters such as timer periods is unclear. For
example, our static 1-second strategy outperforms lsd’s
dynamic strategy. The converse is true with a 20-second
timer setting, as convergence is much slower in this
case. In both MACEDON cases, routing tables converge
steadily as nodes join the Chord ring, eventually leveling
off once all nodes have joined. In lsd, convergence is not
as steady as fix fingers timers are dynamically adjusted.
The goal of this experiment is to demonstrate MACE-
DON’s ability to match or exceed that of lsd. Further,
we note that MACEDON enables researchers to more
effectively explore different dynamic timer strategies.
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4.2.3 Pastry

One goal of the MACEDON framework is to enable rapid
prototyping of distributed systems while maintaining the
performance and low-level optimizations available from
hand-crafted C/C++ implementations. As one initial
validation of our success against this metric, we com-
pare the performance of the Pastry algorithm [22] im-
plemented in MACEDON and within FreePastry [20].
MACEDON provides a high-level specification language
with many of the same benefits of Java, along with li-
braries and routines specifically tailored to DHTs and
overlays. However, it produces C++ code that does not
suffer from some of the memory and performance over-
heads associated with Java and RMI. Our MACEDON
Pastry implementation consists of 400 semicolons versus
approximately 1,500 semicolons in the Java FreePastry
implementation1. To quantify these benefits, we devel-
oped a simple test application to validate our Pastry
implementation. Each application instance streams at
some target data rate (10Kbps in this example) by send-
ing 1000-byte packets at the given interval. On each data
send, the application chooses a destination ID uniformly
at random from the hash address space.

We estimate end-to-end delays for MACEDON Pastry
and FreePastry [20] (using the RMI protocol). We varied
the number of randomly selected nodes from our 20,000-
node topology. For both systems, we allowed routing ta-
bles to converge for 300 seconds before streaming data.
Due to our low streaming rate, intended targets received
essentially all packets transmitted to them. For both sys-

1The FreePastry distribution consists of almost 15,000 semi-
colons, with significant functionality beyond Pastry. Our estimate
is a conservative count based on manual inspection of the source
tree.
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Figure 11: Average latency of received Pastry packets.

tems, each node received approximately the same num-
ber of packets corresponding to the size of hash address
space portion it owns. Figure 11 illustrates the aver-
age per-packet delays. We were unable to run FreePas-
try beyond 100 participants (two instances per physical
machine) due to insufficient memory on our hardware.
We have successfully run 20 MACEDON instances on
these same machines. The graph shows that average la-
tency in MACEDON is approximately 80% lower than
in FreePastry, largely attributable to Java’s RMI over-
head. While FreePastry’s “wire” protocol has yielded
more favorable results (comparable to MACEDON in
some cases), it is unstable in the current FreePastry
release. Overall, our results show promise for MACE-
DON’s ability to enable rapid prototyping while main-
taining system performance.

4.3 Comparing Overlays

One important contribution of MACEDON is the cre-
ation of a fair and consistent overlay evaluation frame-
work. To this end, MACEDON generates native
TCP/IP code, allowing it to leverage ModelNet emu-
lation and live deployment across the Internet, includ-
ing the PlanetLab testbed (to support simulation en-
vironments, we also provide limited ns compatibility).
MACEDON can automatically extract vital topology in-
formation from ns and ModelNet, allowing it to evaluate
overlays against a wide array of metrics. Without such
global information, it is impossible to accurately gauge
an overlay’s performance under certain metrics. For ex-
ample, MACEDON can extract routing tables from ns
and ModelNet to report the expected performance along
metrics such as link stress, latency stretch, and relative
delay penalty (RDP).
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Figure 12: SplitStream bandwidth for two cache policies.

Disparate evaluation techniques have led to the use of
many different performance evaluation metrics in over-
lay comparison. While an evaluation may be concerned
with low link stress, it is unclear whether it is relevant to
all applications. A high-bandwidth link could have link
stress of hundreds for a chat-like application and per-
form well, while a link stress of two over a modem link
for a video distribution would likely be unacceptable.
As a result, it is challenging to choose the appropriate
evaluation metric. MACEDON attempts to bridge this
gap by providing a framework that can report a variety
of popular evaluation metrics. We believe that MACE-
DON will encourage evaluation across more performance
metrics, allowing the metrics themselves to be evaluated.

Our SplitStream experiments are designed to demon-
strate MACEDON’s ability to experiment with a variety
of protocol features. For these tests, we created 300-node
SplitStream forests. We developed a multicast applica-
tion that streams 1000-byte packets at a predetermined
rate (600Kbps for our experiments). Only one node is
designated as the stream source while all other nodes join
the multicast session as receivers. We first allow Pastry
routing tables to converge by idling the system over the
300 seconds. Figure 12 shows the resulting per-node av-
erage bandwidth over time after the convergence period
for two SplitStream flavors. SplitStream and Scribe use
macedon_routeIP(), requesting that data be delivered
directly over IP. Pastry does this by maintaining a loca-

tion cache that maps hash addresses to IPs. Cache en-
tries have an associated lifetime, thereby avoiding stale
mappings that could lead to inefficient routing (a node
could receive packets for a hash address it no longer
owns). With cache eviction disabled, SplitStream de-
livers an average of 580 Kbps to each node (since no
additional nodes enter the overlay, cache entries remain

correct). With a one-second cache lifetime, bandwidth
drops to 500 Kbps as additional bandwidth is consumed
to re-establish stale cache entries. In summary, we be-
lieve that MACEDON is appropriate for carrying out
such detailed and uniform protocol comparisons.

5 Related Work

MACEDON currently supports two types of overlays,
distributed hash tables (DHTs) [11, 22, 25, 30] and appli-
cation level multicast [4, 6, 12, 13, 15, 16, 22]. DHTs and
their applications [9, 24, 23, 31] use hashing to map data
objects and nodes to a logical address space for request
routing. The hash value of a node determines which
portion of the hash address space it owns and therefore,
which data objects it will serve. By ensuring sublinear
node (routing table) state and overlay width and de-
pending on uniform server distribution (using consistent
hashing), these overlay algorithms exhibit high perfor-
mance and scalability.

Built on top of Pastry (or any other DHT), Scribe [24]
creates multicast distribution trees rooted at the DHT
node owning the multicast session ID. Receivers enter
the session by routing join requests toward the root. In-
termediate nodes along the path subsequently create a
reverse path forwarding tree. Building on Scribe’s suc-
cess, SplitStream [6] uses multiple Scribe trees for data
striping, thereby achieving higher bandwidth.

Other popular multicast overlays do not make use of
DHTs. Most, including Overcast [13], NICE [4], and
AMMO [21] create distribution trees optimized toward
application-specific performance. In contrast, Bullet [16]
creates a mesh where nodes exchange summary tickets

that are used to select data peers. Nodes with disjoint
data peer with one another. Since data is received from
a number of carefully selected peers, Bullet nodes receive
much higher bandwidth relative to tree-based overlays.

5.1 Evaluation Methodologies

The ns [29] network simulator provides a standard frame-
work for accurate simulation of network protocols. Un-
fortunately, packet-level, congestion-aware simulation is
costly, leading to inadequate scaling properties when
evaluating overlays over a few hundred in size. For
smaller-scale scenarios, ns provides an efficient and in-
expensive mechanism for system evaluation. In the end,
many researchers have created their own simulators, sac-
rificing accuracy for scale. These simulators tend to pro-
vide packet-level simulation but fail to account for con-
gestion, packet loss, and queuing delays.



Such scale limitations are overcome by network emula-
tion such as with ModelNet [27]. It enables the emula-
tion of native IP applications by subjecting packets to
link restrictions as specified by a network topology. It
emulates routers’ queuing delay and congestion. In our
experiences, thousands of overlay nodes can run on 20-
50 commodity PCs in the ModelNet environment. The
same code runs unmodified in production Internet envi-
ronments and testbeds, including PlanetLab [19]. As a
result, ModelNet’s accuracy and scalability makes it an
appropriate choice for large-scale evaluation.

Neko [26] is another environment for developing and
evaluating distributed algorithms. Similar to MACE-
DON, it allows the same algorithm specification to be
used in a simulator and in a live system. MACEDON,
however, provides a DSL, a set of libraries that address
common issues in distributed algorithm development,
and a generic API that facilitates interoperability be-
tween overlay algorithms and applications.

5.2 Related Languages

MACEDON is broadly related to domain-specific lan-
guages (DSLs) that typically generate functional code
from domain-specific representations. Teapot [7] is a
DSL for writing cache-coherence protocols. Like MACE-
DON, Teapot describes protocol behavior with the use of
event-driven finite state machines. Teapot can generate
“continuations” that allow nodes to suspend processing
while waiting for a particular event. Unlike MACEDON,
code generated by Teapot is not self-contained since the
user must hand-code message handling functions. Addi-
tionally, Teapot’s target domain (cache coherence pro-
tocols) is somewhat smaller than MACEDON’s domain.
Another domain-specific language is the Devil Interface
Description Language (IDL) [18] designed for a substan-
tially different domain than MACEDON, but is related
in design. IDL can be used as documentation for hard-
ware interfaces and can help driver development by re-
ducing the burden of low-level programming. Devil also
includes semantics for verifying specifications.

There has been substantial research in network proto-
col specification and implementation. RTAG [3] uses
a context-free attribute grammar for protocol specifica-
tion, emphasizing simplicity and portability. The gram-
mar is used to capture event sequences allowed by the
protocol. Morpheus [1] is an object-oriented language
tailored for high-performance protocol implementations.
It constrains a protocol designer to a set of design dis-
ciplines derived from experience, advocates the use of
simple protocols that are selected and combined at run-
time, and capitalizes on the knowledge of common pat-
terns in protocol processing to optimize generated object

code. Prolac [14], a lightweight object-oriented language,
focuses on readability, modularity and extensibility. Its
authors offer positive experiences with a TCP implemen-
tation. Prolac’s actions allow arbitrary C code to be
included; it is inserted into the C code produced by the
Prolac compiler. Relative to these efforts, MACEDON is
specifically geared toward overlay networks, focusing on
a standard API, explicit support for protocol layering,
and language support for common overlay functionality.

Beyond system specification, a number of languages tar-
get high-level design and protocol verification. These
range from the highly mathematical, such as IOA [28] to
more programmatic languages, such as TLA [5]. In con-
trast to MACEDON, neither generates functional code.
IOA is an Input/Output Automaton specification lan-
guage, allowing designers to specify one or more automa-
tons to describe their system. IOA tools perform sim-
ulated execution that suggest likely invariants and au-
tomatically prove seemingly tedious portions of system
specification. for formal verification. TLA is a high-level
specification in a highly mathematical language. It is in-
tended to be a design aid, and, combined with its model
checker, can be used to find and remove flaws from sys-
tem designs before system implementation.

6 Conclusions and Future Work

We have presented MACEDON to facilitate the design
and implementation of overlay algorithms. Our sys-
tem provides a domain-specific language for specifying
the high level behavior of overlays such as DHTs and
application-level multicast. MACEDON provides a com-
mon infrastructure that enables fair and consistent over-
lay evaluation. We make use of an overlay-generic API
that enables protocol layering and facilitates porting ap-
plications from one overlay to another. Our results show
that MACEDON can greatly decrease development and
evaluation effort while yielding overlay implementations
that closely resemble or outperform published results,
including those for AMMO, Bullet, Overcast, NICE,
Chord, Pastry, Scribe, and SplitStream. We believe that
MACEDON can be used as an educational tool to un-
derstand the intricacies of overlay algorithms. Finally,
we believe that the MACEDON vision extends beyond
overlay algorithms to include a wider class of distributed
algorithms, though this is the subject of future work.
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