
Realization of RF Distance Bounding

Kasper Bonne Rasmussen

Department of Computer Science

ETH Zurich

8092 Zurich, Switzerland

kasperr@inf.ethz.ch

Srdjan Čapkun

Department of Computer Science

ETH Zurich

8092 Zurich, Switzerland

capkuns@inf.ethz.ch

Abstract
One of the main obstacles for the wider deployment
of radio (RF) distance bounding is the lack of plat-
forms that implement these protocols. We address
this problem and we build a prototype system that
demonstrates that radio distance bounding protocols
can be implemented to match the strict processing
that these protocols require. Our system implements
a prover that is able to receive, process and transmit
signals in less than 1ns. The security guarantee that
a distance bounding protocol built on top of this sys-
tem therefore provides is that a malicious prover can,
at most, pretend to be about 15cm closer to the ver-
ifier than it really is. To enable such fast processing
at the prover, we use specially implemented concate-
nation as the prover’s processing function and show
how it can be integrated into a distance bounding
protocol. Finally, we show that functions such as
XOR and the comparison function, that were used in
a number of previously proposed distance bounding
protocols, are not best suited for the implementation
of radio distance bounding.

1 Introduction

Distance bounding denotes a class of protocols in
which one entity (the verifier) measures an upper-
bound on its distance to another (untrusted) entity
(the prover). In recent years, distance bounding pro-
tocols have been extensively studied: a number of
protocols were proposed [3, 13, 10, 19, 30, 15, 25,
17, 12, 29] and analyzed [8, 26, 11, 23]. The use of
distance bounding was suggested for secure localiza-
tion [28], location verification [25], wormhole detec-
tion [16, 27], key establishment [22, 32] and access
control [22].
Regardless of the type of distance bounding pro-

tocol, the distance bound is obtained from a rapid
exchange of messages between the verifier and the

prover. The verifier sends a challenge to the prover,
to which the prover replies after some processing
time. The verifier measures the round-trip time be-
tween sending its challenge and receiving the reply
from the prover, subtracts the prover’s processing
time and, based on the remaining time, computes
the distance bound between the devices. The veri-
fier’s challenges are unpredictable to the prover and
the prover’s replies are computed as a function of
these challenges. In most distance bounding proto-
cols, a prover XORs the received challenge with a
locally stored value [3] or uses the received challenge
to determine which of the locally stored values it will
return [13, 29]. Thus, the prover cannot reply to the
verifier sooner than it receives the challenge, it can
only delay its reply. The prover, therefore, cannot
pretend to be closer to the verifier than it really is;
only further away.

One of the main assumptions on which the secu-
rity of distance bounding protocols relies is that the
time that the prover spends in processing the veri-
fier’s challenge is negligible compared to the propa-
gation time of the signal between the prover and the
verifier. If the verifier overestimates the prover’s pro-
cessing time (i.e., the prover is able to process signals
in a shorter time than expected), the prover will be
able to pretend to be closer to the verifier. If the ver-
ifier underestimates this time (i.e., the prover needs
more time to process the signals than expected), the
computed distance bounds will be too large to be
useful.

The challenge in implementing distance bounding
protocols is therefore to implement a prover that is
able to receive, process and transmit signals in negli-
gible time. This requirement can be easily met with
ultrasonic distance bounding implementations where
the prover’s processing needs to be in the order of
µs. However, because ultrasonic distance bound-
ing is vulnerable to RF wormhole attacks [16, 27],

1

its application is limited to few specific applications
(e.g., [22]). For most applications, radio distance
bounding is the main viable way of verifying prox-
imity to or a location of a device. In this case, the
prover’s processing time needs to be about 1ns which
would, in the worse case, allow a malicious prover
to pretend to be closer to the verifier by approx.
15cm (assuming that the malicious prover is able to
process signals instantaneously). Currently available
platforms do not support such fast processing. This
strict processing requirement has been, so far, one of
the main obstacles for the wider deployment of RF
distance bounding protocols and related solutions.

In this work, we address this problem. We make
the following contributions. We build a prototype
system that demonstrates that radio (RF) distance
bounding protocols can be implemented to match
the prover’s strict processing requirements (i.e., that
the prover’s processing time is below 1ns). We use
concatenation as the prover’s processing function
and implement it using a scheme that we call Chal-
lenge Reflection with Channel Selection (CRCS).
Our implementation eliminates the need for signal
conversion and demodulation since it does not re-
quire that the received challenges are interpreted by
the prover before the prover responds to them. Our
prover is therefore able to receive, process and trans-
mit signals in less than 1ns. We design a distance
bounding protocol that uses concatenation, imple-
mented with CRCS, as the prover’s processing func-
tion and we analyze its security; we base this proto-
col on Brands and Chaum’s original distance bound-
ing protocol [3].

We further show that processing functions such as
XOR and the comparison function, that were used
in a number of proposed distance bounding proto-
cols, are not best suited for the implementation of
radio distance bounding. The main reason is that,
although XOR and comparison can be executed fast,
these functions require that the radio signal that car-
ries the verifier’s challenge is demodulated, which,
with today’s state-of-the-art hardware, results in
long processing times (typically ≥ 50ns). The de-
sign and implementation of the distance bounding
protocol based on concatenation shows that the use
of functions which require that the prover demod-
ulates (interprets) the verifier’s challenge before re-
sponding to it is not necessary for the implementa-
tion of distance bounding.

To our knowledge this work is the first to propose
a realizable distance bounding protocol using radio
communication, with a processing time at the prover
that is low enough to provide a useful distance gran-
ularity.

The rest of the paper is organized as follows. In
Section 2 we describe the basic operation of distance
bounding protocols. In Section 3, we discuss prover’s
processing functions and their appropriateness for
the implementation of radio distance bounding. In
Section 4 we describe the design of our distance
bounding protocol and in Section 5 we analyze its
security. In Section 6 we present our implementa-
tion and our measurement results. In Section 7 we
discuss related work and we conclude in Section 8.

2 Background on Distance Bounding

Protocols

Distance bounding protocols were first introduced
by Brands and Chaum [3] for the prevention of
mafia-fraud attacks on Automatic Teller Machines
(ATMs). The purpose of Brands and Chaum’s dis-
tance bounding protocol was to enable the user’s
smart-card (verifier) to check its proximity to the
legitimate ATM machine (prover).
The core of all distance bounding protocols is the

distance measurement phase (shown in Figure 1),
wherein the verifier measures the round-trip time
between sending its challenge and receiving the re-
ply from the prover. More precisely, the verifier
challenges the prover with a b-bit freshly generated
nonce Nv (typically b = 1). Upon reception of the
challenge, the prover computes a response fP (Nv),
and sends it to the verifier. This process is repeated
k times. After the challenge-response exchange the
verifier verifies the authenticity of the replies (in this
step distance bounding protocols differ) and mea-
sures the time tVs − tVr between the challenge and
the response. Based on the measured times, the ver-
ifier estimates the upper-bound on the distance to
the prover. The time tPs − tPr between the recep-
tion of the challenge and the transmission of the re-
sponse at the prover is either negligible compared to
the propagation time tPr − tVs or is lower bounded by
the prover’s processing and communication capabil-
ities δ, i.e., tPs − tPr ≥ δ.
After the execution of a distance bounding pro-

tocol the verifier knows that the prover is within a
certain distance, namely:

dist =
tVs − tVr − δ

2
· c

where δ is the processing time of the prover (ideally
0) and c is the propagation of the radio signal.
Although the designs of distance bounding pro-

tocols differ [3, 13, 10, 19, 30, 15, 25, 17, 12, 29],
given their common distance measurement phase,

2

P V

Nv[1], . . . , Nv[k] ∈ {1, 0}
b

(tPr1) Nv[1]oo (tVs1)

(tPs1) f(Nv[1]) // (tVr1) Nv[1]
′ ← f(Nv[1])

...
(tPrk) Nv[k]oo (tVsk)

(tPsk) f(Nv[k]) // (tVrk) Nv[k]
′ ← f(Nv[k])

Verify Nv[1]
′, . . . , Nv[k]

′

Compute db(V ,P) as a function of tVs1 . . . t
V
sk, t

V
r1 . . . t

V
rk

Figure 1: The distance measurement phase of distance bounding protocols consists of a rapid exchange of
messages where the verifier measures the round-trip time between sending its challenges and receiving the
replies from the prover.

their security relies on the same underlying ideas.
We briefly summarize them here. Distance fraud at-
tacks [3], in which the prover tries to pretend to be
closer to the verifier, are prevented by the follow-
ing: (i) the prover cannot generate the reply before
it receives the challenge and (ii) the duration of time
the verifier accounts that the prover will process the
reply is not longer than the prover’s actual process-
ing time. The Mafia-fraud (or man-in-the-middle -
MITM) attack [9], by which an attacker convinces
the verifier that the prover is closer than it really
is, is prevented since the attacker cannot predict ex-
changed challenges/replies and since it cannot sped-
up the propagation of messages (the messages prop-
agate at the speed of light over a radio channel).
Given this, the attacker cannot shorten the distance
measured between the verifier and the prover.

Distance bounding protocols therefore provide the
verifier with an upper-bound on its physical distance
to the prover.

3 Functions Appropriate for Distance

Bounding Realization

As discussed in Section 2, one of the main assump-
tions on which the security of distance bounding
protocols relies is that the time that the prover is
allowed to spend in processing the verifier’s chal-
lenge is negligible compared to the propagation time
tPr − tVs of the signal between the prover and the ver-
ifier. In most applications, the prover’s processing
time would therefore need to be around 1ns. This
would, in the worse case, allow a malicious prover to
pretend to be closer to the verifier by approx. 15cm
(assuming that the malicious prover is able to pro-
cess signals instantaneously). Such short processing
time cannot be achieved with existing platforms.

The main challenge is therefore to design dis-
tance bounding protocols which use prover process-
ing functions f(Nv) that can implemented such that
they can be executed in ≤ 1ns. Before presenting a
function that is well suited for this purpose, we first
discuss functions that were used in distance bound-
ing protocols that are proposed in the open litera-
ture.

The first (obvious) candidate processing functions
are various encryption functions, hash functions,
message authentication codes and digital signatures;
the use of digital signatures for this purpose was pro-
posed by Beth and Desmedt in [1]. The use of such
functions would largely simplify the design of dis-
tance bounding protocols; it would be sufficient to
use well studied challenge-response authentication
protocols [2] where the verifier would measure the
round-trip time between the issued challenge and the
received response. However, the processing time for
these functions even with the fastest available im-
plementations by far exceeds the required processing
time.

In [3] Brands and Chaum proposed a distance
bounding protocol that uses XOR as a processing
function. In this protocol the prover XORs the ver-
ifiers challenge with the value that the prover wants
to transmit back and sends the result back to the
verifier. The main reasoning behind this choice was
that XOR is a fast operation and that it should be
feasible to execute it within the required process-
ing time. Hancke and Kuhn [13] propose a distance
bounding protocol where the prover, based on the
verifier’s challenge chooses from which of the two lo-
cal registers it should send a value back. Again, one
of the main reasons for choosing this function was
that such a function (comparison and access) can be
executed fast.

3

Although XOR and comparison can be executed
fast, these functions require that the radio signal
that carries the verifier’s challenge is converted from
an analog to a digital signal (ADC) and demodu-
lated. Only when it is demodulated, the challenge
can be used by the prover in an XOR function or
for the selection of the register. Equally, in or-
der to communicate the reply back to the verifier,
the prover needs to modulate the signal and con-
vert it from the digital to the analog signal (DAC).
These steps, signal detection, ADC/DAC conversion
and signal modulation/demodulation, increase the
provers processing delay by approx. 170ns [24], not
including possible RX/TX switching costs1. The im-
plementations of an XOR or of a comparison func-
tion that require the signals to be digitalized and de-
modulated therefore require such processing which,
using today’s state-of-the-art hardware, is not suf-
ficiently fast to meet the security requirements of
distance bounding protocols. Even if some process-
ing steps can be sped-up or removed, the prover will
still need a way of (reliably) detecting if it received
a challenge that corresponds to a bit ”0” or a bit
”1”, which requires some processing and thus reduces
the security guarantees of the protocol. Namely,
every nanosecond of additional processing in the
implementation of the prover means that a mali-
cious prover with a faster implementation shorten
the measured distance even further.

In what follows, we show that the choice of a con-
catenation function as the prover’s processing func-
tion, when implemented using a scheme that we call
Challenge Reflection with Channel Selection (CRCS)
eliminates the need for signal conversion and demod-
ulation since it does not require that the received
challenges are interpreted by the prover before the
prover responds to them. The prover, implemented
using CRCS is therefore able to receive, process and
transmit signals in less than 1ns.

3.1 Prover: Concatenation Imple-

mented using Challenge Reflec-

tion With Channel Selection

In this section we describe our implementation of
concatenation as the prover’s processing function.

Bit concatenation CAT : Np[i] × Nv[i] → r[i] =
Nv[i]||Np[i] takes as input the verifier’s challenge bit
Nv[i] and the prover’s input bit Np[i] and returns a
two-bit reply r[i] = Nv[i]||Np[i]. CAT is therefore

1We are not aware of the radio design that can perform
these operations faster.

� � � � � � � � � �

� � � � � � � � � �

Figure 2: The verifier measures the time between
sending a challenge signal c(t) and receiving the re-
ply signal r(t) = r1(t)+ r2(t). If c(t) = r(t), the dis-
tance bound to the prover is then given by (tr−t0)·c,
where c is the speed of light.

given by the following table.

CAT :
Np[i]\

Nv [i] 0 1
0 00 10
1 01 11

3.2 Verifier: Calculation of the Dis-

tance Bound

In order for concatenation to be useful for dis-
tance bounding, we implement it by Challenge Re-
flection with Channel Selection. Our implemen-
tation uses three (non-overlapping) communication
channels. The verifier sends its challenge bits to
the prover using one communication channel (C0),
whereas the prover replies using two communication
channels (C1, C2) (Figure 2). While it is receiving
the verifier’s challenge bit (i.e., the signal that en-
codes it), the prover is responding with the same
signal (bit), but it is sending it on either channel C1

or channel C2, depending on its current input bit
Np[i]. For every challenge bit that it received from
the verifier, the prover therefore transmits two bits
of the reply back to the verifier, encoded in the form
of the signal (it reflect back the same signal that it
received) and of the response channel (it chose the
channel on which to reply). The response r = 10 is
then interpreted as: the challenge bit 1 is reflected
on channel C1, where the channel C1 denotes bit 0,
and channel C2 denotes bit 1). The prover therefore
implements challenge reflection with channel selec-
tion. Note that, although the prover replies with two
bits for each challenge bit, the duration of transmis-
sion of those two bits is the same as for a single
bit of the verifier’s challenge, since the second bit of
the prover’s reply is encoded in the form of channel
selection. This is illustrated on Figure 2.
The schematic of our prover implementing CRCS

is shown on Figure 3. The figure shows the signal in

4

��������� ��	AB�	�

CD��EA�		F�D����

�B�EA�		F�D����

�B�����F�B���B���

�	�D���B�F�����

Figure 3: Schematic of the prover (i.e., of the imple-
mentation of concatenation as its processing func-
tion using CRCS). The figure shows the signal in
the frequency domain at various stages of the cir-
cuit. The challenge-signal (with center frequency
fc) is received by the receiving antenna (on the left)
and multiplied by f∆. This multiplication shifts the
signal by ±f∆ to the channels on two sides of the
original channel. The bit of the prover’s nonce Np[i]
determines which of the two channels is used to send
the response on the transmitting antenna (on the
right).

the frequency domain as it passes through various
stages of the prover’s circuit. The prover receives
the challenge-signal (centered at the frequency fc)
on the receiving antenna. The received signal is then
multiplied by f∆ which creates two signals on two
channels each with central frequencies fc + f∆ and
fc−f∆, respectively. The current bit of the prover’s
nonceNp[i] determines which of the two channels are
used to send the response signal on the transmitting
antenna. The verifier’s signal is thus reflected back
on the channel selected by the prover. Here, the
verifier’s challenge bit can be encoded in the chal-
lenge signal using e.g., Pulse Amplitude Modulation
(PAM) or Binary Phase Shift Keying Modulation
(both of which are used with Ultra-Wide-Band rang-
ing systems). The prover’s response carries two bits,
one encoded in the signal that it sends back (the
same bit that it received by the verifier), and the
other encoded in the channel on which it responds
(i.e., Np[i]).

Here, signal multiplication and selection are done
using analog components only. Namely, the chal-
lenge signal passes through an analog mixer where
it is multiplied with a local oscillator signal with a
frequency f∆. This mixer outputs two signals on
frequencies fc+f∆ and fc−f∆, which are separated
by a high-pass and a low-pass filter, respectively. Fi-
nally, the Np[i] bit (which the prover have commit-
ted to), determines which of the two signals will be
transmitted back to the verifier.

Figure 2 shows the calculation of the distance

bound by the verifier (the signals are shown in the
time domain). The verifier notes the exact time
t0 when it starts transmitting the challenge bits
Nv[i], ...Nv[k] encoded in the signal r1(t), and then
listens on the two reply channels C1 and C2 (that
correspond to the frequencies fc + f∆ and fc − f∆).
When a reply comes back (e.g., on channel C1) the
verifier will mark the exact time tr of the arrival of
the signal. The verifier will then wait for the arrival
of the entire challenge, noting for every time slot on
which channel the reply was sent. After the entire
nonce has been received and processed by the radio,
the verifier checks that the data bits in the reply are
the same as those sent in the challenge, i.e., that
c(t) = r1(t) + r2(t). If that is the case, the distance
bound is then computed as (tr−t0) ·c, where c is the
speed of light. This bit comparison is important for
the security of our distance bounding protocol (as
we detail in Section 4); it can be efficiently done us-
ing autocorrelation, which can then simultaneously
be used to calculate the time difference (e.g., as it is
used in GPS [20]).

4 Distance Bounding Realization

In this section we present our distance bounding pro-
tocol and its realization. The protocol uses concate-
nation implemented using CRCS as the prover’s pro-
cessing function. The main security properties that
we want our protocol to achieve are resilience to dis-
tance fraud and Mafia fraud attacks.
Our protocol is shown in Figure 4. It closely

resembles the original protocol of Brands and
Chaum [3], except that it does not use rapid bit ex-
change, but instead uses full duplex communication
with signal streams. XOR is replaced with the con-
catenation function, and additional checks by the
prover and the verifier are added to make sure the
implementation of concatenation using CRCS does
not introduce vulnerabilities.
The prover starts the protocol by picking a fresh

(large) nonce Np. The prover then sends a commit-
ment to the nonce (e.g., a signed hash of the nonce)
to the verifier. Already now, the prover will activate
its distance bounding hardware and set the output
channel according to the opposite of the first bit of
the nonce Np. From this moment, any signal that
the prover receives on channel C0 will be reflected on
the output channel that is set. However, the prover
does not yet start switching between output chan-
nels.
Upon receiving the commitment, the verifier picks

a fresh (large) nonce Nv and prepares to initiate the
distance bounding phase in which it will measure

5

P (Prover) V (Verifier)
Pick Np

sign(commit(Np))
//

Pick Nv

r ← CRCS(Nv, Np)
��

Nv

��
r

// Record ∆t

N ′

p ← channel(r)

sign(V,Np,Nv)
//

Verify ∆t, Nv, Np, sign(V,Np, Nv)

Figure 4: RF distance bounding protocol.

the distance bound to the prover. The verifier starts
a high precision clock to measure the (roundtrip)
time of flight of the signal and begins to transmit
his nonce Nv on channel C0. From this point on, the
verifier will also listen on the two reply channels C1

and C2 and will keep listening on the two channels
until he either receives the expected response from
the prover or until he detects an error and aborts
the protocol.

As soon as the prover receives (and demodulates)
the first bit of Nv on C0, he starts switching re-
ply channels according to the bits of his nonce Np.
Here, we note that while the first few bits are being
demodulated, the prover is still reflecting the input
(challenge) bits, but he did not start the switch-
ing of the channels (i.e., he did not start sending
back Np). The demodulation of the bits is not done
within the distance bounding hardware (that we call
the distance bounding extension), but is done in the
prover’s regular radio. It is not important how long
it takes for the prover’s radio to demodulate the
first bits, since the prover does not need to begin
to switch the output channels within any predefined
time (as long as the switching starts within the du-
ration of Nv and allows the transmission of Np).
Equally, the first part of Nv could be known and
constitute a public, fixed-length preamble upon the
detection of which the prover would start switching
the channels (i.e., would start sending Np).

When the prover starts sending Np, he will send
the bits of Np with a fixed frequency (e.g., ev-
ery 500ms) by switching channels depending on the
value of the current bit (Figure 2). In each interval,
the prover will therefore reflect back several bits of
Nv and a single bit of Np. The bit of Np is encoded
in the choice of the reply channel. The prover will,
in parallel, also receive the challenge on channel C0

using his regular radio and will demodulate it.

When the verifier has sent all the bits of his nonce,
he waits for the prover to complete the reflection of

the signal and then both the prover and verifier dis-
able their distance bounding extensions. The ver-
ifier can then use an auto-correlation detector like
the ones used in GPS receivers [20] to determine the
exact time of flight of the reflected signal. This can
also be done during the distance bounding phase,
i.e., in parallel to the analog distance bounding cir-
cuit.
After the (time-critical) distance bounding phase

is complete the prover sends a signed message con-
taining his nonce Np, the identity of the verifier V

and the verifier’s nonce Nv to the verifier. The ver-
ifier must then check five things:

• That all the bits of Np reflected by the prover
are of the same width (time duration). This
is necessary to prevent mafia fraud and is de-
scribed in more detail in Section 5.3.

• The data that was reflected back from the
prover must be exactly the same as what was
sent. I.e., when the signal r(t) = r1(t) + r2(t)
is demodulated, the message must contain Nv.
This is visualized in Figure 2.

• The value of N ′

p obtained during the distance
bounding phase must match the commitment
sent in the first protocol message.

• The signature of the final message must be valid
and it must correspond to the expected identity
of the prover.

• The time of flight of the signal ∆t must be less
than some predefined upper limit tmax. The
upper limit is application dependent. E.g., it
can be the radius of some region of interest, or it
can be the (estimated) maximum transmission
range of the radio.

The order is which these checks are performed is
not important but all checks must pass for the dis-
tance bound to be accepted. If all the checks pass,

6

the verifier calculates the distance to the prover as

d =
∆t− δp

2
· c (1)

Where c is the speed of light and δp is the very small
processing delay of the prover. In our implementa-
tion δp < 1ns resulting in a maximum error on about
15cm.

5 Security Analysis

In this section we analyze the resistance of our pro-
tocol to distance fraud and mafia fraud, as well as
attacks against CRCS.

5.1 System And Attacker Model

We consider three nodes, the prover P , the verifier
V and the attacker M . The goals for the three par-
ticipants are as follows: the verifier wants to acquire
an upper bound on the distance to the prover, i.e.,
the verifier wants to know that the prover is closer
than a certain distance. The prover wants to prove
to the verifier that he is within a certain distance.
The goal of the attacker is to disrupt this process
such that the verifier obtains an incorrect distance
bound. The verifier holds an authentic public key
of the prover. The attacker and the prover do not
collude. The attacker corresponds to the standard
Dolev-Yao attacker that controls the network and
thus can eavesdrop on all the communication be-
tween the prover and the verifier, can arbitrary in-
sert and remove messages to/from the communica-
tion channel. She is equally free to transmit nonsen-
sical signals. The attacker knows the public param-
eters of the distance bounding protocol and the type
of hardware used by the nodes and thus the process-
ing times of the prover’s and verifier’s radios. She is
only limited by the fact that it does not have access
to the secrets that are held by the prover and the
verifier and cannot break cryptographic primitives.

We consider two attacks: Distance fraud, where
the prover tries to shorten the measured distance
bound, and Mafia fraud where the attacker tries to
shorten the bound (but does not collude with the
prover). We show that our protocol resists both
attacks. There is a third type of attack in which
the attacker colludes with the prover and has access
to some, but not all, of the secret key material of
the prover (e.g., only nonces and short-term secrets).
This attack is often called the terrorist attack. We
do not specifically address terrorist attacks, but it
has been shown [4] that if needed, distance bound-

ing protocols can be extended to generally protect
against this attack.

5.2 Distance Fraud

Distance fraud is an attack performed by a malicious
prover and consists of the prover trying to shorten
the distance measured by the verifier.

The verifier uses equation (1) to calculate the dis-
tance to the prover. For the prover to “shorten”
the distance to the verifier (without actually mov-
ing closer) he must manipulate the verifiers calcula-
tion and the only thing the prover can influence is
∆t. For the prover to reduce the ∆t measured by
the verifier, thereby reducing the distance, he must
make his replies arrive at the verifier sooner than
they otherwise would, i.e., he must guess the correct
reply (i.e., guess the challenge) and send it before
the verifier expects. In our protocol, the reply which
the prover must send back is the signal he receives
on channel C0. In order to do this, the prover must
guess the content of the challenge signal since the
content of the reply is checked by the verifier as a
part of the verification process. The content of the
challenge is Nv and the probability of successfully
guessing that is given by 1

2|Nv| .

Attacks that rely on manipulation of the modula-
tion scheme, e.g., “late commit”attacks described by
Hancke and Kuhn [14] will not work on this protocol
because the verifier uses auto-correlation to find the
exact time-of-flight of the signal (as it is done in GPS
receivers [20]) rather than using a peak or energy de-
tector. This means that any manipulation done to,
say, the first symbol of the response will not have any
effect unless all subsequent symbols are also shifted
forward. This would require the malicious prover to
guess all the symbols in advance and can therefore
only be done with negligible probability of 1

2|Nv| .

The same argument applies to attacks where the
prover tries to guess the first bit of the nonce [8].
Because the prover doesn’t store and forward the
nonce, but instead must reflect it directly, the prover
would have to guess all the bits of the verifier’s nonce
to perform the attack. We can therefore conclude
that the prover can commit distance fraud only with
probability 1

2|Nv| .

5.3 Mafia Fraud

Mafia fraud is an attack performed by an external
attacker that physically resides closer to the verifier
than the prover. The attack aims to make one of
the parties (either the prover or the verifier or both)
believe that the protocol was successfully executed

7

when, in fact, the attacker shortened the distance
measurement. The requirement that the attacker be
closer to the verifier than the prover is only necessary
because, if the attacker is further away the attack is
trivially defeated by the protection against distance
fraud attacks.

In order for an external attacker to shorten the dis-
tance measured by the verifier, the attacker must re-
spond before the prover during the distance bound-
ing phase. However, because of the checks performed
by the verifier at the end of (or during) the distance
bounding phase, it is not sufficient to just reply be-
fore the prover, the attacker must also make the
value of his nonce match the commitment sent by
the prover in the beginning of the protocol. Since
the attacker can not find a nonce to match the com-
mitment sent by the prover, e.g., find a collision for
the hash function used to generate the commitment,
the attacker is forced to replace the provers com-
mitment with his own, thereby passing the commit-
ment check. However, the attacker cannot fake the
prover’s signature in the final message so he cannot
confirm the nonce.

The attacker can get the prover to reply before
the prover receivesNv, e.g., by sending his own early
signal to the prover, however, this will result in the
prover getting N ′

v 6= Nv which will be detected by
the verifier in the final message. This assumes that
any malicious change to the signal will result in a
change in the demodulated nonce Nv. If that can-
not be guarantied, e.g., because of the sample rate at
the prover or the modulation scheme used for com-
munication, the prover can record the raw incoming
signal and send it back to the verifier. The verifier
can then, e.g., use autocorrelation to make sure the
signal received by the prover is the same as what the
verifier sent.

We can therefore conclude that an attacker can
only commit mafia fraud if he can break, either the
commitment scheme or the signature scheme used in
the protocol.

Because of the way the distance bounding radio
extension is designed it is possible for an attacker
to get the current bit of the provers nonce. As ex-
plained in Section 3.1, the prover’s radio extension
will shift any signal that arrives on the center chan-
nel to either channel C1 or channel C2 depending on
the current bit of the provers nonce. An attacker
can exploit this to get the current bit of the prover’s
nonce without the prover’s knowledge. If the at-
tacker sends a very weak signal, e.g., a DSSS [21]
signal with a spreading code known only to the at-
tacker, the attacker can determine what channel the
response is sent back on, and therefore the current

����� ����� �����

����� ����������

Figure 5: Man in the middle attack (Mafia fraud).
The figure shows the timing of the messages sent by
the verifier (V), the attacker (M) and the prover (P).
Even if the attacker is able to learn the value of the
first bit on the prover’s nonce, the attack will fail
because the attacker is forced to make the first bit
longer than the subsequent bits if he wants to reply
early.

bit of the prover’s nonce. Unless this is prevented,
the attacker can use this information to perform a
successful mafia fraud attack.

In order to prevent this attack the prover must
make sure not to expose all the bits of his nonce
before they are needed. There are two ways this
can be ensured: Either the prover must only en-
able his distance bounding hardware once he is sure
that the verifier has started his transmission or he
must make sure that his reply bits (of Np) are of ex-
actly the same duration. Of course the time duration
must also be known and later checked by the veri-
fier. Our protocol uses the second method. Figure 5
illustrates how this measure prevents the attack. In
the example of this figure the attacker obtains the
value of the first bit of the provers nonce, and uses
it to reply early to the verifier’s challenge. However,
because the prover doesn’t expose the second bit of
his nonce until after the duration of the first bit has
expired, the attacker is forced to make the first bit
’too long’, thus getting detected.

In order to perform this attack, the attacker would
need to guess all the bits of Np, which she can do
only with the probability 1

2|Np| .

6 Implementation and

Measurements

In this section, we describe our implementation of
the prover and the related measurement results.

Our prototype can be seen on Figure 6. The cen-
tral part of the prototype is the mixer (1) which
is responsible for shifting the received challenge up
and down in frequency. The signal from the receiv-
ing antenna comes in from the right (A) and passes

8

Figure 6: This picture shows the prototype imple-
mentation of the prover. It consists of a mixer (1), a
high-pass filter (2), a low-pass filter (3), four ampli-
fiers (4) (only two visible), a 1dB attenuator (5) and
a terminating resistor (6). The signal from the re-
ceiving antenna (A) is mixed with the local oscillator
(B) and sent to the transmitting antenna (C). The
yellow wires are power (+5V). This prototype is an
implementation of the scheme described in Figure 3.

through four amplifiers (4) to bring it up to a power
level where is can be mixed by our mixer. The lo-
cal 500MHz sine wave used for the mixing, comes
in from the bottom of the figure (B) and is passed
through a 1dB attenuator (5) to bring it to the same
level as the radio signal before mixing. The output of
the mixer is split in two and each is passed through
either a high-pass filter (2) or a low-pass filter (3) to
eliminate the unwanted channel. In this prototype
we did not implement the switching mechanism. In-
stead channel C2 is fed directly to the transmission
antenna (C). In order for the signal to split properly,
both sides must have a similar load. for this reason
we added a 50Ω resistor (6) to terminate the unused
channel C1. The implementation of the switching
mechanism can be done using a simple transistor
based switch. We note, that the switch can only
marginally increase the processing delay since, once
set to a particular channel, the switch essentially
acts as a piece of very short wire connecting the
setup to the antenna. This prototype is an imple-
mentation of the scheme described in Figure 3.

6.1 Delay At The Prover

We first wanted to see if our prototype implementa-
tion could receive a signal, shift it to another channel
and transmit it back to the verifier in ≤ 1ns.

In order to test this, we first transmit the chal-
lenge and response signals through cables so as to
better be able to control signal strength and reduce

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

n
s
)

Measurements

Delay Measurements
Average

95% Confidence Interval

Figure 8: Processing time at the prover. The ten
different delay measurements where done using our
measurement setup described in Section 6.1. The
figure shows that the variation in processing time is
small (σ = 61.22ps) and that the average processing
delay is µ = 912.92ps. I.e., less than 1ns.

noise (later we show that the same setup works using
wireless communication as well). The challenge sig-
nal sent on channel C0 is a 3.5GHz sine, modulated
by a 1Hz pulse so it is easy to see and capture the
start of a new“bit”. Our response signal is sent back
on channel C2 at 4.0GHz (i.e., fc = 3.5GHz and
f∆ = 0.5GHz). We generated the 3.5GHz challenge
using a function generator. The generated signal is
split by a power splitter and one end is fed, via a
1 meter cable, into our prototype. The other end
was connected to a 40Gs/s oscilloscope, via another
1 meter cable, to provide the ground truth signal to
which we compare the delay of our prototype. Be-
cause both cables have the same length, the 3.5GHz
signal (the challenge) will arrive at the same time
at the oscilloscope and at the reception point of our
prototype. The output (the response) from the pro-
totype is plugged directly into another input of the
same oscilloscope (keeping the signal path as short
as we could make it using this setup).

Figure 7(a) shows the two signals. The top (yel-
low) signal is coming directly from the function gen-
erator. It is an exact copy of the signal that arrives
at the input of our prototype (this signal arrives
at the oscilloscope and at the prototype input at
the same time). The bottom (green) signal is what
comes out of our prototype implementation. It is a
4.0GHz signal, i.e., the original signal shifted up by
500MHz. We see that the difference in arrival times
between these two signals (i.e., the processing time of
the prover) is 0.888ns. As described in Section 2 the
delay at the prover determines the theoretical advan-
tage a powerful attacker might get. If we translate
0.888ns into distance, the maximum theoretical dis-
tance by which an attacker will be able to shorten
its distance is about 12cm.

We repeated this measurement 10 times, using the
same setup. Figure 8 shows all 10 measured process-
ing times along with their average value and a 95%

9

���������	AB�CDE

F������

(a) Cable

���������	

A�BCD

E�F���C��C�B�

A�BCD

��FCB�A�BCD
�������

�������

�������

(b) Wireless

Figure 7: The delay of the prover’s distance bounding radio extension. The top signal is measured at the
reception antenna of the provers radio and is transmitted on channel C0 at 3.5GHz. The bottom signal is
measured at the transmission antenna and is being transmitted at the C2 channel at 4.0GHz. The delay
between them, and thus the prover’s processing time is 0.888ns.

confidence interval. We see from the figure that the
processing time of the prover is stable between 0.8ns
and 1ns.

Note that if the same setup would have been im-
plemented in an integrated circuit, the signal path
would be a lot shorter and consequently the process-
ing time would have been smaller. We therefore do
not claim that our prototype is the best that can be
achieved, rather it shows the processing time that
can be achieved using standard SMA components.

6.2 Wireless Implementation

Since distance bounding protocols are primarily use-
ful in wireless environments, in this section we show
that our prototype equally enables distance bound-
ing using wireless communication (instead of wires).
The basic construction of the prover is the same as
in the wired setup, except that the prototype input
and output are connected to antennas. The function
generator that generates the verifiers signal and the
oscilloscope used to measure the round trip time are
likewise connected to antennas.

The result of the wireless implementation can be
seen in Figure 7(b). Unfortunately we had to use
SMA cables of about 1m to connect the antennas
because of the way the antennas are mounted. In
addition there was about .1m between the transmis-
sion antenna and the receiving antenna. This results
in a delay introduced by the cables and the space
between the antennas referred to on Figure 7(b) as

“antenna cable delay”. The output of the prototype
was passed through a high-pass filter and the in-
put passed through a low-pass filter to prevent the
transmitting antenna from feeding back into the re-
ceiving antenna. The oscilloscope used to measure
the difference in arrival time also had filters to sepa-
rate the ground truth signal, i.e., the signal coming
directly from the function generator from the one
being transmitted by the prototype. The filters al-
lowed for a full duplex wireless channel to be created
between our wireless prototype and the function gen-
erator and oscilloscope.
It should be noted that the channel switching

mechanism of our prototype is ideal for a wireless im-
plementation. Any wireless distance bounding pro-
tocol needs more than one channel (i.e., full duplex)
in order to reply as fast as possible. Encoding the
prover’s reply in the choice of channel means that
the solution is strait forward to apply without caus-
ing interference between the prover and verifier.

7 Related Work

Distance bounding, as a concept, was first proposed
by Brands and Chaum in [3] who introduced tech-
niques enabling a verifier to determine an upper-
bound on the physical distance to a prover (as sum-
marized in Section 2). In addition, they consid-
ered the case where the verifier also authenticates
the prover in addition to establishing the distance
bound.

10

Several optimizations and studies of distance
bounding were subsequently proposed for wireless
networks, including [28, 30, 5] and for sensor net-
works [18, 5, 27]. Distance bounding protocols
have also been proposed in other contexts, e.g., for
RFIDs [13, 10, 19] and ultra wide band (UWB) de-
vices [17, 12].
In [23] the authors studied information leakage

in distance bounding protocols. A mutual distance
bounding protocol using interleaved challenges and
responses was proposed in [31] and in [28] and [5]
the authors investigated the use of distance bound-
ing protocols for location verification and secure lo-
calization. Sastry, Shankar and Wagner [25] pro-
posed the so-called ”in-region verification” appropri-
ate for certain applications, such as location-based
access control. Collusion attacks on distance bound-
ing location verification protocols where considered
in [7, 6]. Ultrasonic distance bounding was used for
access control [25] and for key establishment [32].
In [22] ultrasonic distance bounding was further used
for proximity based access control to implementable
medical devices. Other attacks have been pro-
posed against distance bounding protocols in gen-
eral. The so-called“late-commit”attacks where pro-
posed in [14], where the attacker exploits the mod-
ulation scheme in order to manipulate the distance.
Bit guessing attacks [8] that accomplish the same
thing where also proposed. These attacks were fur-
ther studied in practical implementations in [11].
Until now, most of the work done in this field has

been theoretical. To our knowledge our work is the
first to propose a realizable distance bounding pro-
tocol using radio communication, with a processing
time at the prover that is low enough to provide a
useful distance granularity.

8 Conclusion

We demonstrated that radio distance bounding pro-
tocols can be implemented to match the strict pro-
cessing that these protocols require (i.e., that the
prover receives, processes and transmits signals in
≤ 1ns). This can be achieved using a specially im-
plemented concatenation as the prover’s processing
function. Through this we showed that the use of
processing functions which require that the prover
demodulates (interprets) the verifier’s challenge be-
fore responding to it, is not desirable or necessary for
distance bounding. Finally, we showed that other
processing functions such as XOR and the compari-
son function, that were used in a number of proposed
distance bounding protocols, are not best suited for
the implementation of radio distance bounding.

References

[1] Thomas Beth and Yvo Desmedt. Identifica-
tion tokens - or: Solving the chess grandmaster
problem. In CRYPTO ’90: Proceedings of the
10th Annual International Cryptology Confer-
ence on Advances in Cryptology, pages 169–177,
London, UK, 1991. Springer-Verlag.

[2] Colin Boyd and Anish Mathuria. Protocols for
authentication and key establishment. Springer,
1998.

[3] Stefan Brands and David Chaum. Distance-
bounding protocols. In EUROCRYPT ’93,
pages 344–359, Secaucus, NJ, USA, 1994.
Springer-Verlag New York, Inc.

[4] Laurent Bussard and Walid Bagga. Distance-
bounding proof of knowledge protocols to avoid
terrorist fraud attacks. Technical report, Insti-
tut Eurecom, France, 05 2004.

[5] Srdjan Capkun and Jean-Pierre Hubaux. Se-
cure positioning of wireless devices with appli-
cation to sensor networks. In IEEE INFOCOM,
2005.

[6] Nishanth Chandran, Vipul Goyal, Ryan Mori-
arty, and Rafail Ostrovsky. Position based cryp-
tography. In CRYPTO ’09: Proceedings of the
29th Annual International Cryptology Confer-
ence on Advances in Cryptology, pages 391–407,
Berlin, Heidelberg, 2009. Springer-Verlag.

[7] Jerry T. Chiang, Jason J. Haas, and Yih-Chun
Hu. Secure and precise location verification us-
ing distance bounding and simultaneous multi-
lateration. In ACM WiSec ’09, pages 181–192,
New York, NY, USA, 2009. ACM.

[8] Jolyon Clulow, Gerhard P. Hancke, Markus G.
Kuhn, and Tyler Moore. So near and yet so
far: Distance-bounding attacks in wireless net-
works. In Proceedings of the European Work-
shop on Security and Privacy in Ad-hoc and
Sensor Networks (ESAS), 2006.

[9] Yvo Desmedt. Position statement in rfid s&p
panel: From relative security to perceived se-
cure. In Financial Cryptography, pages 53–56,
2007.

[10] Saar Drimer and Steven J. Murdoch. Keep
your enemies close: Distance bounding against
smartcard relay attacks. In Proceedings of the
USENIX Security Symposium 2007, 2007.

11

[11] Manuel Flury, Marcin Poturalski, Panos Pa-
padimitratos, Jean-Pierre Hubaux, and Jean-
Yves Le Boudec. Effectiveness of Distance-
Decreasing Attacks Against Impulse Radio
Ranging. In 3rd ACM Conference on Wireless
Network Security (WiSec), 2010.

[12] S. Gezici, Zhi Tian, G.B. Giannakis,
H. Kobayashi, A.F. Molisch, H.V. Poor,
and Z. Sahinoglu. Localization via ultra-
wideband radios: a look at positioning aspects
for future sensor networks. Signal Processing
Magazine, IEEE, 22(4):70–84, July 2005.

[13] Gerhard P. Hancke and Markus G. Kuhn.
An rfid distance bounding protocol. In Se-
cureComm ’05: Proceedings of the First Inter-
national Conference on Security and Privacy
for Emerging Areas in Communications Net-
works, pages 67–73, Washington, DC, USA,
2005. IEEE Computer Society.

[14] Gerhard P. Hancke and Markus G. Kuhn. At-
tacks on time-of-flight distance bounding chan-
nels. In WiSec ’08: Proceedings of the first
ACM conference on Wireless net work secu-
rity, pages 194–202, New York, NY, USA, 2008.
ACM.

[15] Y.-C. Hu, A. Perrig, and D. B. Johnson. Packet
Leashes: A Defense against Wormhole Attacks
in Wireless Networks. In Proceedings of the
IEEE Conference on Computer Communica-
tions (InfoCom), San Francisco, USA, April
2003.

[16] Yih-Chun Hu, Adrian Perrig, and David B.
Johnson. Ariadne: a secure on-demand rout-
ing protocol for ad hoc networks. Wirel. Netw.,
11(1-2):21–38, 2005.

[17] J.-Y. Lee and R.A. Scholtz. Ranging in a Dense
Multipath Environment Using an UWB Radio
Link. IEEE Journal on Selected Areas in Com-
munications, 20(9), December 2002.

[18] Catherine Meadows, Paul Syverson, and LiWu
Chang. Towards more efficient distance bound-
ing protocols for use in sensor networks. Se-
curecomm, pages 1–5, Aug. 28 2006-Sept. 1
2006.

[19] Jorge Munilla, Andres Ortiz, and Alberto
Peinado. Distance bounding protocols with
void-challenges for RFID. Printed handout at
the Workshop on RFID Security – RFIDSec 06,
July 2006.

[20] National Space-Based Positioning, Navigation,
and Timing Coordination Office. Global posi-
tioning system. http://www.gps.gov/.

[21] Maxim Integrated Products. An introduction
to direct sequence spread spectrum communi-
cations. http://www.maxim-ic.com/, 2003.

[22] Kasper Bonne Rasmussen, Claude Castelluccia,
Thomas S. Heydt-Benjamin, and Srdjan Čap-
kun. Proximity-based access control for im-
plantable medical devices. In CCS ’09: Proceed-
ings of the 16th ACM conference on Computer
and communications security. ACM, 2009.

[23] Kasper Bonne Rasmussen and Srdjan Čapkun.
Location privacy of distance bounding proto-
cols. In CCS ’08: Proceedings of the 15th ACM
conference on Computer and communications
security, pages 149–160, New York, NY, USA,
2008. ACM.

[24] Qingchun Ren and Qilian Liang. Throughput
and energy-efficiency-aware protocol for ultraw-
ideband communication in wireless sensor net-
works: A cross-layer approach. IEEE Transac-
tions on Mobile Computing, 7:805–816, 2007.

[25] Naveen Sastry, Umesh Shankar, and David
Wagner. Secure verification of location claims.
InWiSe ’03: Proceedings of the 2nd ACM work-
shop on Wireless security, New York, NY, USA,
2003. ACM.

[26] Patrick Schaller, Benedikt Schmidt, David
Basin, and Srdjan Capkun. Modeling and veri-
fying physical properties of security protocols
for wireless networks. In CSF ’09: Proceed-
ings of the 2009 22nd IEEE Computer Security
Foundations Symposium, pages 109–123, Wash-
ington, DC, USA, 2009. IEEE Computer Soci-
ety.

[27] S. Sedighpour, S. Capkun, S. Ganeriwal, and
M. Srivastava. Implementation of attacks on
ultrasonic ranging systems, nov 2005.

[28] D. Singelee and B. Preneel. Location verifica-
tion using secure distance bounding protocols.
In Mobile Adhoc and Sensor Systems Confer-
ence, 2005. IEEE International Conference on,
Nov. 2005.

[29] Nils Ole Tippenhauer and Srdjan Čapkun. Id-
based secure distance bounding and localiza-
tion. In In Proceedings of ESORICS (European
Symposium on Research in Computer Security),
2009.

12

http://www.gps.gov/
http://www.maxim-ic.com/

[30] S. Čapkun, L. Buttyán, and J.-P. Hubaux.
SECTOR: Secure Tracking of Node Encounters
in Multi-hop Wireless Networks. In Proceed-
ings of the ACM Workshop on Security of Ad
Hoc and Sensor Networks (SASN), Washing-
ton, USA, October 2003.

[31] Srdjan Čapkun, Levente Buttyán, and Jean-
Pierre Hubaux. Sector: secure tracking of node
encounters in multi-hop wireless networks. In
ACM SASN ’03, pages 21–32, New York, NY,
USA, 2003. ACM.

[32] Srdjan Čapkun and Mario Čagalj. Integrity re-
gions: authentication through presence in wire-
less networks. In WiSe ’06: Proceedings of the
5th ACM workshop on Wireless security, pages
1–10. ACM, 2006.

13

	Introduction
	Background on Distance Bounding Protocols
	Functions Appropriate for Distance Bounding Realization
	Prover: Concatenation Implemented using Challenge Reflection With Channel Selection
	Verifier: Calculation of the Distance Bound

	Distance Bounding Realization
	Security Analysis
	System And Attacker Model
	Distance Fraud
	Mafia Fraud

	Implementation andMeasurements
	Delay At The Prover
	Wireless Implementation

	Related Work
	Conclusion

