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Abstract

Static program analysis and model checking are two dif-
ferent techniques in bug detection that perform error
checking statically, without running the program. In gen-
eral, static program analysis determines run-time proper-
ties of programs by examining the code structure while
model checking needs to explore the relevant states of
the computation.

This paper reports on a comparison of such approaches
via an empirical evaluation of tools that implement these
techniques: CBMC — a bounded model checker and Par-
fait — a static program analysis tool. These tools are run
over code repositories with known, marked in the code
bugs. We indicate the performance of these tools and re-
port on statistics of found and missed bugs. Our results
illustrate the relative strengths of each approach.

1 Introduction

The safety of software can be a mission critical issue in
computer systems. A significant number of program er-
rors are still found even in software that has been thor-
oughly tested. Such flaws could lead to a situation which
severely compromises the system’s security. This is es-
pecially the case for low level system software (such as
operating systems), which are usually implemented in
the C programming language.

While using C has a number of benefits (including ac-
cess to system resources, relatively small size of code)
there are many sources of potential flaws. These errors
can increase the level of vulnerabilities thereby exposing
systems to a significant number of attacks, which often
leads to very serious consequences, including inconsis-
tent and unpredictable program behaviour, undetectable
disclosure of confidential data, run-time errors and sys-
tem crashes. Consequently there is a necessity in effec-
tive detection of such errors.

There are many general ways to tackle the problem
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of bug detection, including manual code inspection, test-
ing [25], static and run-time analyses [24], model check-
ing [23] or a combination of these techniques.

While testing remains the principal approach to de-
tect bugs, recent advances have made it possible to con-
sider other techniques such as static program analysis
and model checking for large systems.

Static program analysis is the automatic determina-
tion of run-time properties of programs [12], which con-
siders run-time errors at compilation time automatically,
without code instrumentation or user interaction. Static
analysis builds an abstract representation of the program
behaviour and examines its states. This is done by the
analyser maintaining extra information about a checked
program, which has to be an approximation of the real
one. Static analysis may result in sound analyses, that
is, if a program is declared to be safe, it is indeed safe.
But owing to the nature of the approximations to analysis
may report errors that actually do not exist. Analysis that
is not sound (especially involving pointers in C) is also
used [20].

Model checking [23, 11] on the other hand computes
the run-time states of the program without running the
program. The generated run-time states are used to check
if a property holds. If the program has a finite number of
states, it is possible to do an exhaustive analysis. The
program is said to be verified if program behaviour sat-
isfies all properties in the specification. If such an exe-
cution path, that would lead to a violation of any of the
properties, can be found, the program is said to fail veri-
fication. The result returned by a model checker is either
a notion of a successful verification, or a counterexam-
ple — an execution path that violates a given property.
If the program is not finite state, certain types of ap-
proximations are necessary, or a model-check may not
terminate. For instance one can have bounded model
checking [5, 9], where the number of states explored are
bounded. Such approach is not sound — as a bug can exist
beyond the bound. However, all bugs within the bound



can be identified.

Based on the model checking and static program anal-
ysis characteristics, one usually makes the following
general observations: if one examines running time and
resource consumption, model checkers will be a more
expensive approach in bug detection than static program
analysis. This has been the motivation to develop static
analysers for large code bases [8]. However static anal-
ysis is not as accurate as model checking. So a model
checker should be able to produce more precise answers.
An interesting question is does the accuracy of the re-
sults from model checking justify the extra resources it
consumes.

Engler and Musuvanthi [15, 14] demonstrate results
that dispel some of these common beliefs related to
model checking vs static analysis. Our work is similar
(i.e., to check whether these beliefs hold and if so under
what circumstances) although there are a few key differ-
ences. One is that that we use standard code bases with
known bugs. Furthermore we do not explicitly write any
specification for model checking — we only check for a
single property, viz., buffer overflow. Thus our compar-
ison is about the tools for the buffer overflow property.
We also compare the behaviour on precision and perfor-
mance.

In this paper we present our results comparing static
analysis and model checking on benchmarked (i.e., with
known marked bugs) code bases. Our aim is to find out
if it is possible to determine when to use static analysis
and when to use model checking. Firstly, we need to de-
termine whether the two approaches are comparable, and
if so, establish the way it may be performed and identify
the specific comparison criteria.

2 Experimental Setup

There are many possible tools that we could have cho-
sen including lint (a consistency and plausibility static
bug checker for C programs) [18], PolySpace (a static
analysis tool for measuring dynamic software quality at-
tributes) [13] Splint (an open source lightweight static
analysis tool for ANSI C programs) [16], BLAST (a
model checker that utilizes lazy predicate abstraction and
interpolation-based predicate discovery) [4], SLAM (a
symbolic model checking, program analysis and theo-
rem proving tool) [3], SATURN (A boolean satisfiability
based framework for static bug detection) [27].

We choose Parfait and CMBC for this comparison.
The choice of these tools were dictated by their avail-
ability and prior uses for large programs.

CBMC is a bounded (via limiting the number of un-
winding of loops and recursive function call depths)
model checker for ANCI C programs [10]. CBMC can
be used for the purposes of verification of array bounds,

pointer safety, exceptions and user-specified assertions.
Additionally, the CBMC tool checks if sufficient un-
winding is done [1], ensuring that no bugs exist beyond
the bound. If the formula is verified but cannot prove that
sufficient unwinding has been performed the claim fails
verification. The program is verified when all identified
formulas are verified and no unwinding violations exist.

Parfait [8, 6] is a static bug checker for C and C++
source code designed by Sun Microsystems Laboratories
(now Sun Labs at Oracle). This tool was created specif-
ically for the purpose of bug checking of large source
code bases (millions of lines of code). Parfait operates
by defining an extensible framework composed of layers
of program analyses. Initially Parfait generates a sound
list of bugs — the one that contains all possible program
errors, including such that do not exist. Parfait iterates
over this list, applying a set of different analyses, accept-
ing a bug as a real one and moving it to the set of real
detections, or rejects it as non-existent. Analyses are or-
dered from the least to most expensive, and are applied
to ensure that bug statements are detected in the cheapest
possible way. We should note that Parfait is different to
other static program analysis tools and was designed to
have a low false positive rate (e.g. report only bugs that
are proven to be ones during the analysis.)

Cifuentes et al [7] have identified common pitfalls and
provide a framework to compare error checking tools.
Using this framework, we focus on precision which is
the ratio of bugs that are reported correctly to bugs that
are reported but do not exist and scalability — ability of
to tool to produce reports in timely and efficient manner.

In our comparison we measure precision by classify-
ing the results from the tools into the following 3 cate-
gories:

o True Positive — reports that are correct (i.e. existing
bugs)

o False Negative — undiscovered bugs

o False Positive — reports that are incorrect (i.e. non-
existing bugs) where non-existent bugs are reported
as bugs

We also identify and report on True Negative results,
defined as the difference between the number potential
bugs identified by the tool and real bugs, to better demon-
strare differences in approaches.

It is important to enable a fair evaluation, because
different tools target specific types of bugs. For in-
stance, Parfait performs a memory-leak analysis, not im-
plemented in CBMC. In order to avoid such issues, we
limit our comparison to Buffer Overflows [2], which is
the most common type of memory corruption and se-
curity exploit. A buffer overflow occurs when data is



copied to a location in memory that exceeds the size of
the reserved destination area. Other types of bugs that
may be present in the code are not considered.

For the effective evaluation of the effectiveness of the
tools we use a benchmarking framework — a repository
with known bugs which are documented. This allows
us effectively test the performance of the tools [21] and
map detections to false positive, false negative and true
positive results. For this evaluation we used the Beg-
Bunch [7] — benchmarking framework developed by Sun
Labs at Oracle. The BegBunch framework includes four
suites(code repositories) with bugs marked in the source
code according to their type, which allows filtering out
the types of errors not relevant for this comparison. In
our comparison we consider the code from the lowa [22],
Cigital and Samate [19, 26] suites from the BegBunch
and only used programs that contain buffer overflows. To
be precise in detection of this type of bug and overcome
issues related to differences in analyses of the tools, we
limit our search to small sized programs that contain one
or two buffer overflows. Thus we do not use code from
Parfait-Accuracy — the fourth BegBunch suite, which
programs often contain bugs of different types.

Although Parfait and CBMC are both used to identify
bugs they differ in the reporting of the results. Parfait re-
ports include found bugs including extra information of
bug type (e.g. buffer overflow, memory leak etc) and bug
origin. Additionally Parfait is integrated into BegBunch
framework and is able to reveal full statistics over the
set of programs from BegBunch, including true positive,
false positive, false negative detections and the overall
running time of the tool. CBMC, on the other hand, be-
ing a model checker reports only the notion of success-
ful verification or a counterexample, if verification fails.
Furthermore it stops when the first error is found. Thus
we need to map the results produced by CBMC into the
established comparison criteria, viz., false positive, true
positive and false negative bug detections and determine
the overall running time. Additionally to that we need to
collect memory usage statistics for both tools.

Our experimentation process is as follows:

e Run Parfait and collect the results. As the Beg-
Bunch was initially designed for the purpose of test-
ing Parfait it reports relevant statistics (i.e. false
positives, false negatives, true positives and over-
all running time). We only needed to measure the
memory consumption and calculate true negatives.

e For every program, identify the set of properties
(claims in CBMC terminology) that CBMC intends
to check.

e Conduct a separate CBMC run for each property
and collect the results. For each run measure the
time consumption and memory usage.

e Classify the violated properties into true positive,
false positive and false negative detections.

In this experimental set up we would expect CBMC to
have a greater resource usage for verification of the same
code, when compared with Parfait.

Parfait can be expected to generate a low false positive
error rate. CBMC is a sound tool only if enough unwind-
ing of loops, function calls are done. So we could get a
few false negatives. But as CBMC does exhaustive state
exploration we can expect no false positive detections for
CBMC.

2.1 Configuration of the tools

Parfait invocation was performed via the BegBunch in-
terface. We have specified the lists of programs to run
as a plain text file, where each benchmark name appears
on the new line (a BegBunch inbuilt feature for Parfait
runs with multiple programs). Reports produced by the
framework include relevant bug statistics in terms of run-
ning time and detection type (true positive, false pos-
itive,false negative) for all applied analyses. We have
have filtered out the non buffer overflow detections on
the stage of BegBunch reporting. Initially BegBunch was
created for the purpose of testing Parfait, therefore no is-
sues were expected or encountered while running Parfait
with the BegBunch code.

A feature of CBMC is that it can be customised
to focus only on certain types or errors. Given
our experimental framework we were interested only
in array bounds, pointer checks and arithmetic over
and underflow checks. These were specified using
the ——bounds-check, —--pointer-check, and
-—overflow-check flags. CBMC also performs a
simple form of slicing, where it removes assignments un-
related to the property being checked.

As formerly mentioned, in order to perform effective
and fair comparison, the CBMC output (a set of violated
claims) should be interpreted into false positive, false
negative and true positive bug detections. We have pro-
cessed every claim in a specific manner examining the
trace of each particular violated property, creating a sim-
plified claim, that would contain information about bug
origin in terms of program line and function name where
it has occurred.

In order to gather all the necessary statistics on all the
examined programs, scripts that automated the runs of
CBMC were created.

We now describe the instrumentation of the run-time
measurement in CBMC. Due to the specifics of verifica-
tion with CBMC (claim-by-claim basis to force CBMC
to find all bugs), the time evaluation might not be con-
sidered as completely fair due to the overlapping of the



same program structure generated in memory for every
claim (considering that every claim evaluation is a sep-
arate process). However, taking into account the speed
of SAT solving (much slower than structure generation)
the overall running time (total time of consequent runs
of all claims) was used. The program analysis part was
amortised over all the claims and did not contribute a sig-
nificant value.

3 Results

Now we present the reports produced by CBMC and
Parfait over Towa(Table 1), Samate (Table 2) and Cigi-
tal(Table 3) suites. The aggregated results for all suites
are presented in Table 4. The results compute true pos-
itives, false negatives and false positives as well as the
running time and highest memory peak per suite and
overall. We discuss tool’s performance false negative and
true positive results in each of the sections and false pos-
itive results in Section 3.4.

We also report on true negative results for Parfait. This
is because Parfait performs its analysis in two steps —
searches for all possible errors and filters out false pos-
itives. We acknowledge that such results are intermedi-
ate, are not reported by Parfait by default and should not
be used in calculation of Parfait’s precision level. We
include true negatives in order to demonstrate the dif-
ferences in model checking and static program analysis
approaches: where CBMC performs exhaustive verifica-
tion of program states within a bound and stops, if a vio-
lation is found, whereas Parfait considers potential bugs
and analyses them one by one to determine whether the
bug should be accepted and reported as true positive or
rejected as a false negative. True negatives better demon-
strate the precision of a program static analysis tool used
and give a broader view on false negatives and false
positives of Parfait. Not just as bugs missed, correctly
and incorrectly reported, but as bugs that were correctly
rejected (true negatives), wrongly rejected (false nega-
tives), wrongly accepted (false positives), correctly ac-
cepted (true positives).

We do not include such a measure for CBMC. Theo-
retically, the closest approximation to a true negative re-
sult for this tool can be the number of claims that CBMC
checks. However, in practice, program properties from
the model checking point of view do not directly cor-
respond to the bugs in static program analysis approach
— several violated properties might correspond to a sin-
gle bug and vice versa (we have discussed the issue of
mapping claims to bugs in the previous section and we
choose to include such results for Parfait as we perform
such a mapping and looking at the results from bugs per-
spective).

Additionally we report the accuracy rate for every

suite and overall. Such calculations were done using the
formula derived by Williams and Heckman [17]. Accu-
racy is calculated based on false positive (F'P), false neg-
ative (F'IN), true positive (I'P) and true negative (1T'N)
results for the tools

TP+ TN
TP+TN+FP+ FN

We do not use the notion of true negative result in our cal-
culation of accuracy, because it can not be clearly defined
for CBMC and would not be a fair measure of compari-
son:

Accuracy =

A _ TP
ceuracy = TFPTFN
3.1 Iowa results
Iowa
Bugs:421 Benchmarks:415
CBMC | Parfait

True Positive 413 274
False Positive 0 0
False Negative 8 147
True Negative - 60
Running Time | 18:40:59 00:00:47
Memory Peak | 2.497 Gb 6712 Kb
Accuracy 98% 65%

Table 1: Iowa Verification Results

We have used 415 programs from Iowa suite, where
the largest program is 136 lines, the smallest program
is 43 lines. The average code size is 94 lines. For the
Towa code base CMBC is more precise. It missed only
8 bugs which is 1.87 percent of all bugs. While Parfait
found about 69 percent of all bugs. However CBMC took
over 18 hours to compute the result. The acceptability
of this time is questionable. The memory peak is more
acceptable given current machine configurations.

3.2 Samate results

We have considered 997 programs from Samate code
base, where the largest program is 618 lines, the smallest
program is 6 lines. The average code size is 18 lines. In
the Samate code base CMBC was also more precise. It
missed 35 bugs which is about 3 percent of bugs. Parfait
on the other hand had accuracy rate of 84% comparing
to 97% by CBMC, and correctly rejects 290 bugs against
167 false negatives.

CBMC had a worse false negative rate and has taken
considerably less time for verification and lower mem-
ory consumption comparing to the results of the Iowa



Samate
Bugs:1033 Benchmarks:997
CBMC Parfait

True Positive 998 866
False Positive 0 0
False Negative 35 167
True Negative - 290
Running Time | 01:16:18 00:01:26
Memory Peak | 307.388Mb 6748 Kb
Accuracy 97% 84%

Table 2: Samate Verification Results

suite. Although the Samate test suite contains twice as
many programs, they clearly differ in complexity. Par-
fait has shown better results for false negative detections,
staying at approximately 16 percent of precision which
is considerably better than for previous suite.

3.3 Cigital results

Cigital
Bugs:11 Benchmarks:11
CBMC Parfait

True Positive 11 0
False Negative 0 11
False Positive 0 0
True Negative - 1
Running Time | 00:01:50 00:00:01
Memory Peak | 94.668 Mb 4372 Kb
Accuracy 100% 0%

Table 3: Cigital Verification Results

We have considered 11 programs from Cigital code
base, where the largest program is 18 lines, the smallest
program is 5 lines. The average code size is 8 lines. For
Cigital CBMC is complete and sound (no bugs missed,
no false positives detected). CBMC shows good run-
ning time and low memory consumption, which is still
much greater than Parfait’s. However it should be ac-
counted that even for such running time Parfait misses
all bugs and therefore accuracy for Parfait and CBMC
significantly differ — 0% against 100%.

3.4 Overall results

Overall results show that model checking approach has
been much more expensive in terms of running time
(over 19 hours) and memory peak (approximately 2.5
Gb). Such results are gathered over a large amount

Overall
Bugs:1465 Benchmarks:1423
CBMC | Parfait

True Positive 1422 1140
False Negative 43 325
False Positive 0 0
True Negative - 351
Running Time | 19:59:07 00:02:14
Memory Peak | 2.497 Gb 6748 Kb
Accuracy 97% 77%

Table 4: Overall Verification Results

of small sized programs which indicates that running
CBMC over a really large code base could be extremely
time and resource consuming. However CBMC shows
very good accuracy rate — 97% overall, and finds ap-
proximately 19% more bugs. Both tools have reported
a zero rate over false positives, which is common for
model checkers and specific to Parfait design. As for-
merly noted Parfait was designed to produce a small false
positive rate for large scale programs. Which is why the
results for small sized programs hold at the very low rate
— zero in our case.

4 Discussion and lessons learned

The ratio in bug detection of the tools depend on the
level of approximation of a model to a real program.
And whilst static program analysis tools simplify such
a model for better scalability characteristics and ease
of analysis, model checkers try to create an equivalent
model with the exact program properties, inheriting code
complexity and thus extending resource consumption,
but achieving higher precision. This difference in ap-
proaches is effectively demonstrated by the performance
of Parfait and CBMC and the rate of true positives —
model checker has introduced significantly better accu-
racy, as in 97% of true positive detections with CBMC
against 77% with Parfait, however was extremely slow
and resource demanding hitting the limit of 4 Gb per
process for a 32 bit system. We report the highest mem-
ory usage of CBMC of 2.497 Gb, as this was the great-
est memory peak of a workable verification. We have
learned that insufficient unwinding was one of the rea-
sons for false negative detections for CBMC. In our ap-
proach, in cases of insufficient system resources we were
limiting the verification process to a performed finite run
with the largest possible resource allocation. Another
reason lies in difference of internal libraries of CBMC
and Parfait. In our approach we worked with the bare
bone systems and thus automatically treated undetected



bugs that were occurring due to non-included system li-
brary code as false negatives. In case of static program
analysis tool, such results are, of course, in direct relation
to a complexity of an abstract model, which is simpler
comparing to CBMC.

During such a comparison we have learned that there
are certain limitations in the approach we have taken,
which do not allow examine the current question in full
depth. Such issues include:

Differences in functionality of internal libraries —
neither of the tools we used performs dynamic anal-
ysis and thus rely on the source code of inbuilt C
standard library, which in case of CBMC does not
fully include usual functionality. This often results
in false negative results, however may be altered by
including needed source code.

Definitions of analyses — bug, that one tool can iden-
tify as buffer-overflow, another may refer to as an
array-bounds-violation, similarly, as one may not
be targeted for certain types of errors the other is.
Thus, it needs to be decided whether a non-found
bug is supposed to be one or it is a false negative
detection. Prior to this we have limited our search
to small sized programs, as we could not reliably
determine types of bug detections that occur along
with buffer-overflows. Programs we used usually
contained one or two buffer overflows only.

Despite discussed limitations, based on the received
results, we may conclude that in buffer overflow analy-
sis static bug checkers can get close to model checkers
narrowing the trade-offs of speed/accuracy to the ratio
of false negative detections. However, gathered results
effectively show that given the running time and the re-
source usage of CBMC it would not be possible to model
check the code base of the size of an operating system,
which means that in this respect static program analysis
generally wins. Authors may suggest that in large code
bases both techniques may be successfully used together
to balance the speed/precision factors.

5 Conclusion

This paper has described our experience in comparing
two approaches in error detection — static program anal-
ysis and model checking to answer the question of trade-
offs between these techniques commonly presented as
slow and precise for model checking and fast and inac-
curate for static analysis. We have taken an empirical
approach in evaluation via a comparison of the results
produced by the tools that implement these methods. Our
choice of the tools was dictated by their availability and
prior use to large code bases. These results are in some

variance with the results reported by Engler and Musu-
vathi [14].

Our evaluation of a static program analysis tool and a
model checker has demonstrated common differences in
two approaches in terms of running time, memory con-
sumption and ratio missed and discovered bugs. We may
conclude that ratio of false positives — incorrectly identi-
fied bugs, in some cases of static program analysis might
be effectively reduced to the bare minimum.
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