USENIX Association

Proceedings of the
2001 USENIX Annud
Technical Conference

Boston, M assachusetts, USA
June 25-30, 2001

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Charm: An I/O-Driven Execution Strategy for High-Performance
Transaction Processing

Lan Huang
Department of Computer Science
State University of New York
Stony Brook, NY 11790

lanhuang@cs.sunysb.edu

Abstract

The performance of a transaction processing sys-
tem whose database is not completely memory-
resident critically depends on the amount of physi-
cal disk 1/O required. This paper describes a high-
performance transaction processing system called
Charm, which aims to reduce the concurrency
control overhead by minimizing the performance
impacts of disk I/O on lock contention delay. In
existing transaction processing systems, a transac-
tion blocked by lock contention is forced to wait
while the transaction currently holding the con-
tended lock performs physical disk I/O. A sub-
stantial portion of a transaction’s lock contention
delay is thus attributed to disk I/Os performed
by other transactions. Charm implements a two-
stage transaction execution (TSTE) strategy, which
makes sure that all the data pages that a trans-
action needs are memory-resident before it is al-
lowed to lock database pages. Moreover, Charm
supports an optimistic version of the TSTE strat-
egy (OTSTE), which further eliminates unnecessary
performance overhead associated with TSTE. An-
other TSTE variant (HTSTE) attempts to achieve
the best of both TSTE and OTSTE by executing
only selective transactions using TSTE and others
using OTSTE. Charm has been implemented on the
Berkeley DB package and requires only a trivial
modification to existing applications. Performance
measurements from a fully operational Charm pro-
totype based on the TPC-C workload demonstrate
that Charm out-performs conventional transaction
processing systems by up to 164% in transaction
throughput, when the application’s performance is
limited by lock contention.

Tzi-cker Chiueh
Department of Computer Science
State University of New York

Stony Brook, NY 11790
chiueh@cs.sunysb.edu

1 Introduction

High-performance transaction processing systems
have seen a resurgent interest within the explosively
growing E-commerce community, especially after
the publicly reported “melt-down” of the on-line
electronic trading system of several well-established
stock brokerage houses. The user-perceived re-
sponse time of a transaction consists of three com-
ponents: CPU processing time, disk I/O time, and
waiting time due to lock contention. For high-
throughput transaction processing systems used in
banking and stock trading applications, CPU time
is typically insignificant compared to disk I/O time.
Unless the underlying database 1s fully memory-
resident, read disk I/O cannot be completely elim-
inated. Moreover, database logging and data per-
sistence require write disk I/O even with main-
memory database management systems. Most
on-line transaction processing systems, although
equipped with a large amount of physical memory
to reduce the number of disk I/Os, do not neces-
sarily have the luxury to keep the entire database
memory-resident. Lock contention delay is itself
often dependent on the amount of disk 1/0, be-
cause existing transactions systems allow transac-
tions that are holding locks to perform disk I/O and
thus lengthen the waiting time of those transactions

that are blocked by the held locks.

While extensive research has been done in the con-
currency control area to improve the throughput of
transaction processing systems, this paper presents
the design, implementation and evaluation of a
transaction execution strategy that is orthogonal
and thus complementary to existing concurrency
control algorithms. By re-arranging the order of
execution of I/O operations within each individual
transaction, the Two-Stage Transaction Execution

(TSTE) strategy described in this paper greatly re-
duces the average response time of individual tran-
sactions and improves the overall throughput of the
transaction processing system. The authors wish
to emphasize that the TSTE strategy is not yet
another concurrency control algorithm, because its
goal is not to reduce the number of lock conflicts,
but to reduce the contention delay associated with
each lock conflict.

Specifically, the goal of TSTE 1is to reduce the lock
contention delay in disk-resident transaction pro-
cessing systems to the same level as that experienced
by memory-resident transaction processing systems.
TSTE runs each transaction in two stages, a fetch
stage and an operate stage. In the fetchstage, TSTE
brings all the data pages required by a transaction
to main memory and pins them down. No locks
are acquired in this stage. In the operate stage,
TSTE actually executes the transaction in exactly
the same way as in traditional transaction process-
ing systems, i.e., acquiring/releasing and waiting for
locks, etc. Because the data pages required by a
transaction are guaranteed to be memory-resident
in the operate stage, the contention among tran-
sactions running in this stage is identical to the
case when these transactions are running against
a memory-resident database. In other words, as
far as lock contention is concerned, TSTE turns
a disk-based transaction processing system into a
memory-resident transaction processing system by
decoupling disk T/O from lock acquisition/release:
in the fetch stage, a TSTE transaction performs disk
I/0O but not locking, and vice versa in the operate
stage. Consequently the following invariant always
holds true for an ideal decoupled transaction pro-
cessing system: The lock contention delay that a
transaction experiences never includes the disk 1/0
time of another transaction. Due to practical imple-
mentation issues and inter-transaction data sharing
behavior, the above invariant may not always hold
in TSTE. Therefore, despite its ability to reduce the
lock contention delay, TSTE also incurs additional
performance overhead. We have developed several
optimization techniques to effectively reduce this ex-
tra performance cost.

We have implemented the first Charm prototype,
including several performance optimizations, based
on the Linux-based Berkeley DB package, version
2.4.14 [1, 2, 17] and carried out a detailed perfor-
mance study on this prototype using a standard on-
line transaction processing benchmark, TPC-C. The
rest of this paper i1s organized as follows. Section 2

TX-1 TX-2 TX-3 TIME
write_lock (P1) ——
—t— write_lock(P3)
write_lock(P2) ——
WAIT
DISK 1/O
WAIT
Commit —— read_lock(P2)
Commit —+read_lock(P3)

Commit

Figure 1: An example scenario in which transactions
that are blocked due to lock contention (TX-2 and
TX-3) actually experience the delay of the physical
disk T/O performed by another transaction (TX-1).

reviews previous related research efforts on the re-
duction of concurrency control cost. Section 3 de-
scribes in more detail the TSTE strategy, as well as
its optimized variants. Section 4 presents the results
and analysis of a detailed performance study on the
Charm prototype. Section 5 concludes this paper
with a summary of main results from this research
and an outline of on-going work.

2 Related Work

The idea of TSTE was originally proposed in ear-
lier work [14] and has been analyzed by Franaszek
et. al. [12, 13], which exploited the concept of ac-
cess invariance to perform speculative disk /O, and
compared TSTE with various combinations of opti-
mistic concurrency control and two-phase locking
(2PL) through a simulation-based study. None of
these works included the optimistic TSTE and hy-
brid TSTE schemes discussed in this paper. More-
over, Charm is the first known implementation of
TSTE in industrial-strength transaction processing
software, and this paper is the first to report em-
pirical performance measurements of TSTE from a
system researcher’s view.

TSTE is not a new concurrency control algorithm.
While newer concurrency control algorithms exploit
semantics of transactions [3] or objects of abstract
data types [4, 5] to release locks as early as possi-
ble, TSTE takes a completely different approach by
removing disk I/O time from lock contention delay.
There 1s a superficial similarity between optimistic
concurrency control algorithms [6] and TSTE, es-

pecially its optimistic variant, because they both
adopt rollback as a mechanism to undo the effects
of writes when the speculated assumptions do not
hold. However, the underlying conditions of spec-
ulation, as well as when to rollback, are very dif-
ferent for these two algorithms. Optimistic concur-
rency control assumes that lock contention is rare,
and therefore proceeds with data accesses without
acquiring locks. It is required to roll back the trans-
action when lock conflicts are detected at the end of
the transaction. TSTE, on the other hand, assumes
that disk I/O is rare, and undoes all the intermedi-
ate writes when it detects that a transaction is going
to perform the first physical disk 1/0O. Whereas op-
timistic concurrency control attempts to reduce the
lock acquisition /release overhead, TSTE aims to re-
duce the portion of lock contention delay attributed

to disk 1/0.

The idea of decoupled architecture [7] in computer
architecture literature partially motivates the TSTE
strategy. It was originally proposed to bridge the
speed gap between CPU execution and memory ac-
cess, but has been extended to address the perfor-
mance difference between memory and disk [8]. The
main idea is to statically split a program into a
computation part and a data access part, and to
run the data access part ahead of the computation
part so that the data required by the computation
part has been brought into cache (memory) from
memory (disk) by the time it is actually needed.
TSTE’s fetch stage is essentially a (close to) perfect
prefetching mechanism. However, the performance
advantage of disk data prefetching, lies not in de-
creased data access delays, but in the reduction of
lock contention delays as seen by other transactions
that contend for locks that are being held. Recently
Chang [15] developed an automatic binary modifica-
tion tool that modifies existing binaries to perform
speculative execution in order to generate prefetch-
ing hints.

TSTE is different from other file system or database
prefetching research [9, 10] because its goal is not
really about cutting down the number of physical
disk T/Os, but to decouple disk I/Os from lock ac-
quisitions. As the database size increases and ap-
plication access patterns become more complicated,
the effectiveness of file system/database prefetching
methods decreases, but the usefulness of TSTE in-
creases because it is more likely for a transaction to
encounter disk I/O while holding locks.

3 Two-Stage Transaction Execution

3.1 Basic Algorithm

The fundamental observation motivating the Two-
Stage Transaction Execution (TSTE) strategy is
that the average lock contention delay in main mem-
ory database systems is much smaller than disk-
resident database systems because of the absence
of disk /0. For example, in Figure 1 Transaction 2
is blocked because of the read access to P2, which
1s write-locked by Transaction 1, and Transaction 3
is blocked because of the read access to P3, which
is write-locked by Transaction 2. As a result, both
Transaction 2 and 3 experience the delay associated
with the disk T/O performed by Transaction 1. In
general, the delay of a physical disk I/O could ap-
pear as part of the response time of one or multiple
transactions. The ultimate goal of TSTE is to en-
sure that each disk I/O’s access delay contributes
to the response time of exactly one transaction, the
one that initiates the disk I/0O.

Table 1 shows the average percentage of a transac-
tion’s lock contention delay that is due to disk I/Os
performed by other transactions, measured on the
Berkeley DB package running the TPC-C workload
with the Warehouse' parameter set to five, which
represents a database larger than 1 GByte. The
testing machine has an 800 MHz PIII CPU, 512
Mbytes of memory is used for the user level buffer
cache. There are a total of 640 Mbytes physical
memory in this machine. The database tables reside
on three 5400-RPM disks: one disk holds transac-
tion logs; the other two disks hold all other data.
This table is meant to illustrate the extent of the
potential performance improvement if disk 1/O is
completely decoupled from lock contention. For ex-
ample, up to 93.3% of the lock contention delay
could be eliminated when the number of concurrent
transactions is two. As the number of concurrent
transactions increases, this percentage decreases be-
cause delay due to true data contention starts to
dominate.

The basic idea of TSTE is to split the execution
of each transaction into two stages. In the fetch
stage, TSTE performs all the necessary disk I/Os to
bring the data pages that a transaction needs into
main memory and pins them down, by executing
the transaction once without updating the database.

I'Warehouse is the database size scaling factor.

One possible implementation of the fetch stage is to
keep a local copy of the updates without committing
them to the database at the end of the transaction.
Another implementation, which is used in our sys-
tem, is to skip all update operations and only bring
into main memory necessary pages. In the second
operate stage, the transaction is executed again, in
the same way as in conventional transaction process-
ing architectures. Because the fetch stage brings all
required data pages into memory, transactions in
the operate stage should never need to access the
disks as long as access invariance holds. In those
cases that the access invariance property does not
hold, the transactions need to perform disk 1/Os in
the operate stage.

No. of Concurrent | Percentage of Lock Contention
Transactions Delay due to Disk I/O
2 93.3%
4 80.9%
6 54.1%
8 34.8%
10 18.4%

Table 1: Average percentage of lock contention de-
lay that a transaction experiences that is due to
disk 1/Os performed by other contending transac-
tions, versus the number of concurrent transactions.
The measurements are collected on the Berkeley
DB package running the TPC-C workload with the
Warehouse parameter set to five. The user-level
database cache size is set to 512 Mbytes and CPU
is an 800 MHz Pentium III.

The execution of a transaction in the fetch stage
1s special in two aspects. First, transactions exe-
cuting in this stage do not lock database items be-
fore accessing them. Because transactions cannot
hold locks on database items, it is impossible for one
transaction in the fetch stage to wait for a lock held
by another transaction. On the other hand, transac-
tions in the operate stage never need to access disks,
because the pages they need are brought into mem-
ory in the fetch stage. As a result, a transaction
blocked on a lock should never experience, during
the waiting period, any delay associated with disk
I/O performed by the transaction currently hold-
ing the lock. With the TSTE strategy, the lock
contention delay contains only CPU execution and
queuing times and is thus much smaller than that in
conventional transaction processing architectures.

Second, because transactions do not acquire locks

before accessing data, they should not modify data
in the fetch stage, either. That is, transactions per-
form only read disk I/Os in the fetch stage, includ-
ing those data pages that are to be written as well
as the address generation computation for data page
accesses, but skip all write operations. This guaran-
tees that the result of executing transactions using
TSTE is identical to that in conventional transac-
tion processing architectures.

By separating disk I/O and lock acquisition into two
mutually exclusive stages, TSTE eliminates the pos-
sibility of long lock contention delay due to disk I/0.
However, TSTE itself incurs additional performance
overhead. The fact that TSTE executes each trans-
action twice means that TSTE is doing redundant
work compared to conventional transaction process-
ing systems. For transactions whose CPU time is
large, this redundant work may overshadow the per-
formance gain from TSTE. Fortunately, the CPU
processing time is typically small compared to disk
I/0 delay for applications that require high transac-
tion throughput such as stock trading applications.
However, for long running transactions, TSTE may
require too much memory to hold fetched pages and
may exceed memory resources.

Because TSTE does not acquire locks, it is possi-
ble that the data pages chosen to be brought into
memory in the fetch stage are not the same as those
needed in the operate stage. The reason is that be-
tween the fetch and operate stages, the pages that
a transaction needs may change. In this case, some
of the read disk I/Os performed in the fetch stage
are useless and thus redundant. These disk 1/Os
correspond to mis-prefetching. For example, each
delivery transaction in TPC-C is supposed to ful-
fill the oldest order in the database, and there-
fore should only start after the previous delivery
transaction is finished. Prefetching the data record
for the current “oldest order” before the previous
delivery transaction is completed almost certainly
lead to mis-prefetching. Furthermore, transactions
that mis-prefetch actually need to perform read disk
I/0 in the operate stage to retrieve those pages that
the fetch stage should have brought in. Therefore,
the invariant that no transaction needs to wait for
another transaction that is performing physical disk
I/O does not hold for mis-prefetching transactions.

The scenario described in Figure 1 is not limited to
lock contention incurred by false-sharing when only
page-level or table-level locking is supported. Even
for a system with fine-grain locking, lock contention

blocked by disk I/O can be reduced to a minimum
using TSTE.

There 1s an exception to this two-stage execution
strategy: accesses to database pages that are typi-
cally memory resident and for which the lock hold-
ing period is usually short. An example is accesses
to highly concurrent data structures such as B-trees
[11]. Specifically, in the current Charm prototype,
accesses to the intermediate but not leaf nodes of
B-trees are preceded by lock acquisitions even in
the fetch stage. The separate treatment of B-tree’s
intermediate and leaf nodes prevents de-referencing
of outdated and potentially dangling pointers, and
reduces the probability of mis-prefetching, at the
expense of a relatively minor performance cost.

3.2 Optimistic TSTE

To reduce TSTE’s redundant CPU computation
overhead, we developed an optimistic version of the
TSTE (OTSTE) algorithm. With database buffer-
ing, not all transactions need to perform physical
disk I/O in the fetch stage. Therefore, what a TSTE
transaction attempts to achieve in the fetch stage,
i.e., making sure that data pages needed in the op-
erate stage are in main memory, may be redundant
in some cases. Instead of always running a transac-
tion in two stages, OTSTE starts each transaction
in the operate stage. If all of a TSTE transaction’s
data page accesses hit in the database cache, the
transaction completes successfully in one stage. If,
however, the transaction indeed needs to access the
disk, it “converts” itself to the fetch stage when the
first such instance arises and subsequently proceeds
to the operate stage as in standard TSTE.

The transition from the operate stage to the fetch
stage in OTSTE involves the following three steps.
First, the effects of all the database writes before
this data access are un-done. Second, all the locks
acquired in the operate stage are released. Third,
all the data pages that this transaction has touched
are pinned down in memory, in preparation for the
subsequent operate stage.

Compared to TSTE, OTSTE eliminates the fetch
stage altogether when the data pages required by a
transaction are already memory-resident. However,
OTSTE also incurs an additional overhead due to
the transition from the operate stage to the fetch
stage when a transaction needs to perform physi-

cal disk T/O and acquire locks. The major compo-
nent of this stage-transition overhead is attributed
to the undo of earlier database writes. As we will
show later, OTSTE’s performance gain resulting
from eliminating unnecessary fetch stages does not
out-weigh the overhead associated with rolling back
updates.

3.3 Hybrid TSTE

Transactions running under TSTE incur redundant
computation overhead when the transactions do
not require physical disk I/O. OTSTE is meant to
address this problem. However, in OTSTE, mis-
prefetching and rollback overhead still exist. To fur-
ther reduce these overheads, we developed another
variant of TSTE called Hybrid TSTE (HTSTE),
which classifies transactions running under TSTE
into three types:

1. Transactions that encounter significant mis-
prefetches in the operate stage;
mis-

2. Transactions that do not encounter

prefetches in the operate stage, and

3. Transactions the do not require any disk I/0.

HTSTE runs the first type of transactions as in tra-
ditional transaction processing systems, i.e., start
them in the operate stage and do not convert them
into the fetch stage even when physical disk T/O is
needed. For this type of transaction, HTSTE does
not incur rollback overhead. HTSTE runs the sec-
ond type of transaction directly in the fetch stage,
i.e., as in generic TSTE. HTSTE runs the third
type of transactions in the operate stage but con-
verts them into the fetch stage when physical disk
I/0O is needed, as in OTSTE.

The unique feature of HTSTE is that it does
not require a priori knowledge of the transac-
tions’ data access behaviors. Instead, the decision
of whether a transaction should be executed us-
ing TSTE, OTSTE, or a conventional transaction-
processing model is made dynamically. By default,
HTSTE executes a given transaction type using
TSTE, and collects two accumulative statistics for
all 1ts instances. The first statistic, called mis-
prefetch ratio, is the percentage of data accesses that
lead to physical disk I/O in the operate stage, and

the other, called conversion ratio, is the percent-
age of execution instances of this transaction type
that require two stages to complete. If a transaction
type’s mis-prefetch ratio is above a certain thresh-
old, all its future instances will be executed as con-
ventional transactions (Type 1). Otherwise if the
transaction type’s conversion ratio is above a cer-
tain threshold, all its future instances will continue
to be executed under TSTE (Type 2). Otherwise,
all the future instances of this transaction type will
be executed using OTSTE (Type 3). We use a con-
servative value as threshold, e.g., only when more
than 95% of one type of transaction requires no disk
I/0, this transaction type will be started always in
OTSTE. For the TPC-C benchmark?, this predic-
tion works out well: neword and delivery always
require disk I/O during execution; slev, ostat,
payment seldom do. If a certain transaction type
does not display a clear trend in I/O behavior, it
will be started as TSTE.

3.4 Cost Analyses

Let P (P <= 1) be the percentage of transactions
that need to perform physical disk 1/O during their
lifetime, and let’s assume an ideal HTSTE imple-
mentation (i.e., All single-phased transactions do
not need to perform disk I/O and all two-phased
transaction do need to perform disk I/0.), the time
to finish one transaction for each TSTE variant is
as follows:

TSTE: Transaction Time =
Toperate (1)

Tfetch +

OTSTE: Transaction Time = P * (Trouback +
Tfetch —|— Toperate) + (1 - P) * Toperate (2)

HTSTE: Transaction Time = P * (Treten +
Toperatie) + (1 - P) * Toperate (3)

Tteter is the time spent in the fetch stage and
Toperate 18 that spent in the operate stage. Troupack 18
the time to undo operations of the previous transac-
tion. Transactions running under TSTE experience
both the fetch and the operate stage. Those running
under OTSTE complete within a single stage with

2TPC-C contains five types of transactions: neword,
payment, slev, ostat, and delivery. Neword places a new
order for a customer. Payment clears the balance of a cus-
tomer. Slev checks the stock level. Ostat checks the order
status. Delivery delivers an order.

a probability of (1 — P) and need to spend an ad-
ditional rollback overhead with a probability of P.
HTSTE categorizes transactions into I/O transac-
tions and non-1/0 transactions. Those transactions
that need to perform disk I/O are executed in two
stages, while those non-I/O transactions start with
the operate stage directly without going through the
fetch stage. HTSTE performs the best since it does
not incur unnecessary rollback or fetch overhead.
The performance difference among different TSTE
variants depends on P, the rollback overhead and
the relative costs of the fetch and operate stage.
Note that here we are assuming an ideal implemen-
tation of HTSTE, which can correctly determine
whether a transaction needs to perform disk 1/0
at run time. This may not be always the case in
practice.

3.5 Prototype Implementation

We have implemented the TSTE prototype on the
Berkeley DB package, version 2.4.14 [1], which is an
industrial-strength transaction processing software
library that has been used in several highly visible
web-related companies such as Netscape. Berkeley
DB supports page-level locking as well as error re-
covery through write-ahead logging. Berkeley DB
supports an asynchronous database logging mode
where commit records are not forced to disk, but
are written lazily as the in-memory log buffer fills.

The fundamental difference between TSTE and tra-
ditional transaction processing systems lies in the
fetch stage. What the TSTE prototype needs to
do is to execute an input transaction twice, to skip
all the lock acquisition requests and updates in the
fetch stage and to pin down the database cache
pages that are brought into memory in the first
stage. When transactions are executed the second
time, they are processed the same way as in Berkeley
DB. HTSTE dynamically collects internal statistics
and decides which type of transaction to start with
the fetch stage and which to start with the operate
stage.

To implement OTSTE, we modified Berkeley DB so
that it starts each transaction in the operate stage,
and pins down all the data pages accessed. When a
TSTE transaction encounters a database cache miss
for the first time, the system converts the transac-
tion from the operate stage to the fetch stage. Dur-
ing this transition, all the effects of writes are un-

done, 1.e., the database state is rolled back to the
beginning of the transaction, and all the locks ac-
quired by this transaction so far are released. Fi-
nally, the transaction re-starts by re-executing the
missed database cache access, but this time in the
fetch stage.

Charm requires minor modifications to the program-
ming interface that Berkeley DB provides to its ap-
plications to keep track of I/O behavior of each
type of transaction online. Although TSTE exe-
cutes each transaction twice, the operations in the
transactions do not have to be idempotent because
the execution in the first stage never results in per-
sistent side effects.

4 Performance Evaluation

4.1 Experiment Setup

To evaluate the performance of TSTE, we ran the
TSTE prototype on an 800-MHz Pentium-IIT ma-
chine with 640 Mbytes of physical memory running
the Linux kernel version 2.2.5 and compared its per-
formance measurements against those from Berke-
ley DB, which uses a traditional transaction process-
ing architecture. We used the standard transaction
processing benchmark TPC-C. This study focuses
only on the throughput of neword transactions.
In the workload mix, neword accounts for 43%,
payment 43%, and ostat, slev and delivery each
4.7%. Warehouse is the parameter to scale the
database size. The Warehouse parameter (w) in
TPC-C was set to five, corresponding to a total
database size of over 1.0 GByte, which grows dur-
ing each test run as new records are inserted. The
database cache size used in this study was 512-
Mbytes unless otherwise stated.

Each data point 1s the average result of ten runs,
each of which consists of more than 10,000 transac-
tions, which is sufficiently long for the system to
reach a steady state. Before starting each run, we
ran a number of transactions against the database
to warm up the database cache. Unless other-
wise stated, the number of warm-up transactions
i1s 80,000. FEach transaction is executed as a sep-
arate user process, and the number of concurrent
transactions remains fixed throughout each run. All
the following reported measurements are performed

at the user level. All the runs assume page-level
locking. We set the log buffer size to 500 Kbytes
and turned on the asynchronous logging mechanism,
which eliminated most disk 1/Os associated with
transaction commits in our tests. This set-up en-
sures that the performance bottleneck lies mainly in
lock waiting and data accessing disk I/O rather than
logging disk I/0O. All tests were run on a single com-
puter and thus the reported performance measure-
ments did not include network access delays, as in
standard client-server set-ups. In the experiments,
we compared Berkeley DB, TSTE OTSTE and
HTSTE by varying the following workload/system
parameters: the number of concurrent transactions,
the database cache size and thus database cache hit
ratio, and the computation time.

Three 5400-RPM IDE disks are used in the exper-
iments. The log resides on disk 1, the orderline
table resides on disk 2 and all other tables reside on
disk 3. The write cache of the log disk is turned off
to protect data integrity. Neword throughput is re-
ported as system throughput as the TPC-C bench-
mark requires, whose metric unit is tpmC (transac-
tion per minute).

4.2 Overall Comparison

We use the transaction throughput as our perfor-
mance metrics, which is the ratio between the total
number of neword transactions that succeed and the
elapsed time required to complete a run of test tran-
sactions. Note that some transactions in the run
are aborted to resolve deadlocks. The un-modified
Berkeley DB package serves as the baseline case
that corresponds to standard transaction process-
ing systems based on two-phase locking. In HTSTE,
neword and delivery transaction start in the fetch
stage; payment, ostat and slev start in the oper-
ate stage.

Figure 2 shows the throughput comparison and Fig-
ure 3 shows the lock contention comparison between
HTSTE and Berkeley DB when a different num-
ber of concurrent transactions are running simul-
taneously. In this case, the database cache is 512
Mbytes, which gives a database cache hit ratio of
99.7%. HTSTE out-performs Berkeley DB by up
to 164% in transaction throughput (when concur-
rency is four). HTSTE is better than Berkeley DB
except in the degenerate case when the number of
concurrent transactions is one, where there is no

T T 10

14000 - o——ao Berkeley DB b Berkeley DB
HTSTE HTSTE —

12000 q 8 r B

10000

8000 -

6000 -

Throughput (tpmC)
Avg Neword 1/0 Time (ms)

4000 -

2000 -

1 2 4 6 8 10 12
Number of Processes

Number of Processes

(a) (b)

Figure 2: Overall system throughput (a) and average I/O time (b) per neword transaction comparison
between HTSTE and Berkeley DB with different concurrency levels.

|C0ncurrency| 1 | 2 | 4 | 6 | 8 | 10 | 12 |
Berkeley DB 13.90 | 17.75 17.85 14.76 13.45 12.21 11.50
HTSTE 13.35 | 20.74 | 32.22 | 26.30 19.63 | 16.86 | 13.55

Table 2: Average file system read/write time comparison with different concurrency levels. The values are

in terms of msec.

lock contention delay for HTSTE to reduce in the
first place. And as concurrency level reaches 10-
12, HTSTE and Berkeley DB have minor perfor-
mance difference. The performance difference be-
tween HTSTE and Berkeley DB increases initially
with the number of concurrent transactions until
the concurrency reaches four. Before this point, lock
contention delay dominates the transaction response
time and therefore the reduction in lock contention
delay that HTSTE affords plays an increasingly im-
portant role as lock contention delay increases with
concurrency. After this point, the performance dif-
ference between HTSTE and Berkeley DB starts to
decrease with the number of concurrent transactions
because the reduction in lock contention delay be-
comes less significant percentage-wise with respect
to the transaction response time.

To understand why HTSTE out-performs Berkeley
DB, let’s examine the three components of a trans-
action’s response time: computation, disk 1/0, and
lock contention. The average computation time of
a transaction under HT'STE is only slightly longer
than that of Berkeley DB because of TSTE’s two-
pass execution. Figure 2(b) and Figure 3 show the
comparison between HTSTE and Berkeley DB in

the average I/0O time and lock contention time per
neword transaction. As expected, HTSTE signifi-
cantly reduces the lock contention delay, by up to
a factor of 10 when compared to Berkeley DB (Fig-
ure 3(a) 2 processes). However, HTSTE still ex-
periences noticeable lock contention delays, because
mis-prefetching in the fetch stage leads to physical
disk I/O in the operate stage, which in turn length-
ens the lock contention time. As transaction concur-
rency increases, the probability of mis-prefetching
grows, and consequently the difference in lock con-
tention delay between HTSTE and Berkeley DB de-

creases.

Surprisingly, HI'STE fares worse than Berkeley DB
in the average disk I/O time when more than two
concurrent transactions are running simultaneously
(Figure 2(b)). The total number of disk I/Os is-
sued in both cases is roughly the same and the
longer average I/0O time in HTSTE is due to disk
queuing. Table 2 shows that average file system
read/write time for HTSTE is longer than Berke-
ley DB. We consider that the file system read/write
time closely reflects the disk 1/O latency without
file system cache effects. The reason is that in
our experiments, the file system cache is minimized

800

Berkeley DB
HTSTE

600 B

200 |_|_‘ B
: ol
2 4 6 8

1 10 12

Avg Neword Lock Contention Time (ms)
ey
o
o
.

Number of Processes

(a)

o
©
T

o
o
T

I
~
T

Lock Contention/Response Time

02 L o——= Berkeley DB
HTSTE
0.0
1 2 4 6 8 10 12

Number of Processes

(b)

Figure 3: Average lock contention time per neword transaction (a) and the ratio between average lock

contention time and average response time (b).

|C0ncurrency| 1 | 2 | | 6 | 8 | 10 | 12 |
Berkeley DB | 0.0% | 0.7% | 1.8% | 2.8% | 3.7% | 4.6% | 5.4%
HTSTE 0.0% | 01% | 0.4% | 1.6% | 3.2% | 41% | 5.0%

Table 3: The percentage of aborted transactions under different concurrency levels.

to almost zero bytes and the Berkeley DB pack-
age maintains its own user-level buffer cache. Be-
cause HTSTE allows transactions to perform their
disk 1/Os as soon as possible, it is more likely that
disk 1/Os are clustered and thus experience longer
disk queuing delay. In contrast, under Berkeley DB
the disk T/Os are more spread out because transac-
tions are interlocked by lock contention. Therefore
the TSTE strategy presents an interesting design
trade-off between decreasing lock contention delay
and increasing disk I/O time. In general, it is eas-
ler to invest more hardware to address the problem
of longer disk queuing delay, e.g., by adding more
disks, than to lowering the lock contention delay.
Therefore, TSTE represents an effective approach
to build more scalable transaction processing sys-
tems by taking advantage of increased hardware re-
sources.

A minor benefit of HI'STE’s reduced lock con-
tention delay is the decreasing number of deadlocks
(Table 3). This allows HTSTE to complete more
transactions successfully within a given period of
time than Berkeley DB, although the contribution
of this is less than 2% of the throughput difference
between HTSTE and Berkeley DB.

When w = 1, the initial database size is reduced to
150 Mbytes, which is even less I/O bound, the ex-
periments show trends similar to those we described
When w = 10 or larger, similar
trends are observed when the system is running at
the non-1/0 bound status.

in this section.

4.3 Sensitivity to Workload /System Pa-
rameters

The performance edge of HTSTE over Berkeley
DB is most pronounced when there is a “medium”
amount of physical disk I/O (i.e., when fewer than
25% transactions perform disk 1/0). Figure 4 shows
the performance difference between HTSTE and
Berkeley DB under different cache sizes. To tune
the effective database buffer cache size and thus
disk I/O rate, we locked down a certain amount
of main memory. Figure 5 gives the breakdown for
lock waiting and average I1/O time for neword tran-
sactions as a function of cache size. HTSTE experi-
ences about the same amount of disk I/O as Berke-

Neword Throughput (tpmC)

| Cache Size (Mbytes) | Neword | Payment | Slev | Ostat | Delivery |

128 99.8% 71.4% 93.1% | 82.3% 98.7%
256 75.5% 21.1% 87.5% | 48.1% 97.3%
384 22.0% 3.7% 62.0% | 18.1% 84.1%
512 13.3% 1.3% 51.0% 9.4% 71.7%

Table 4: Percentage of transactions that perform I/O during their lifetime with different cache size. The
number of concurrent transactions is four. neword, payment, slev, ostat, delivery are five types of
transactions in TPC-C. The percentages are relative to the total of each type of transaction.

1000

Berkeley DB
HTSTE

800 - q

. Hlmm

128/95.5% 256/99.0% 384/99.7% 512/99.7%
Cache Size (MByte)/Hit Rate

Neword Avg L ock Waiting Time (ms)

(a)

1000

Berkeley DB
HTSTE

800 - q

400 - B

0 128/95.5% 256/99.0% 384/99.7%
Cache Size (MByte)/Hit Rate

Neword Avg I/0 Time (ms)

512/99.7%

(b)

Figure 5: Lock waiting time (a) and average I/O time (b) per neword transaction under different cache

size/hit rate.

10000

Berkeley DB
HTSTE

8000 - B
6000 - b
4000 B

2000 - B

[]

256/99.0% 384/99.7%
Cache Size (MByte)/Hit Rate

0
128/95.5%

512/99.7%

Figure 4: System throughput for neword transac-
tions under different cache size/buffer hit rate. Con-
currency level 1s 4.

ley DB. But it suffers more from disk queuing hence
longer average 1/0 time (Figure 5(b)). When the
cache hit rate is low, the storage subsystem is the
performance bottleneck. The overall throughput is
not improved much because the lock waiting time is
now transferred to I/O queuing time. Table 5 shows
that average file system read/write time for HTSTE
is longer than Berkeley DB. The conditions under
which TSTE algorithms excel are: some transaction
that could proceed without I/0O is blocked by some
transaction that is holding a lock and doing I/0.
If the buffer hit rate i1s low, the scenario becomes:
most transactions need to perform I/O requests dur-
ing execution, the storage system is stressed so much
that I/O queuing is as bad as the cost of lock wait-
ing. This is not the case TSTE can optimize. If
the storage system can weather more burst I/0 re-
quests, then TSTE can start outperforming 2PL at
a lower buffer hit rate.

Table 4 lists the percentage of transactions that
need disk I/O under different cache sizes. In

[Cache Size (Mbytes) [128 256 384 512

Berkeley DB 112.42 | 114.14 | 34.01 | 17.85
HTSTE 146.94 | 122,92 | 46.81 | 32.22

Table 5: Average file system read/write time comparison with different cache size. The values are in terms
of msec. Concurrency level is four.

| Concurrency | 2 | 3 | 4 | 5 | 6 |
w=1 0.9% | 2.1% | 2.9% | 3.8% | 4.4%
w=>5 1.7% | 2.1% | 2.4% | 3.0% | 3.3%

Table 6: Percentage of OTSTE transactions that need to perform physical disk I/O in the operate stage for

varying numbers of concurrent transactions.

HTSTE, relatively less time is spent in lock waiting.
As the cache size increases, the database buffer hit
ratio improves, and the workload becomes less and
less T/O-bound. When the workload is I/O-bound,
the disk I/0O time dominates the entire transaction
response time, and the reduction in lock contention
delay that HT'STE enables plays a less significant
role in relative terms. On the other hand, when the
workload i1s CPU-bound, there is not much physical
disk I/O and HTSTE is not able to achieve a sig-
nificant reduction in lock contention delays because
they are relatively small to begin with. In practice,
it 1s technically impossible for applications that re-
quire high transaction processing throughput, i.e.,
on the order of 1000 transactions per second, to
run at an operating point that is I/O-bound. At
the same time, it is economically infeasible to elimi-
nate all disk T/Os by having enough memory to hold
the entire database. Therefore, we believe that the
operating point, at which high-performance trans-
action processing systems can achieve 1000+ tran-
sactions per second, is exactly where a TSTE-like
strategy is most useful.

4.4 Detailed Analysis

One potential performance problem associated with
TSTE and its variants is mis-prefetching, which
causes transactions in the operate stage to perform
physical disk I/Os, and thus prolong lock contention
delay. Table 6 shows the average percentage of tran-
sactions that actually need to perform physical disk
I/Os in their operate stage for both w = 1 and
w = b cases. The probability of mis-prefetching

increases with the degree of lock contention, which
in turn grows with the number of concurrent tran-
sactions. As the size of the underlying database
increases (from w = 1 to w = 5), the probability
of true data contention among a fixed number of
concurrent transactions decreases, and so does the
probability of mis-prefetching. In general, the ab-
solute percentage of mis-prefetching transactions is
quite low for the TPC-C benchmark, under 4.5%
for the w = 1 case and under 3.4% for the w = 5
case. These results conclusively demonstrate that
TSTE’s performance cost due to mis-prefetching is
insignificant for the TPC-C benchmark, and explain
why TSTE out-performs Berkeley DB.

Compared to Berkeley DB, TSTE incurs additional
processing overhead because it executes a transac-
tion twice. TPC-C benchmark’s five transactions
all perform much more disk I/O than computa-
tion. With a benchmark requiring more computa-
tion than TPC-C, TSTE will pay more processing
overhead. OTSTE corrects this problem by avoid-
ing this additional processing overhead when all the
data pages that a transaction needs are already res-
ident in memory. To evaluate the impact of CPU
time on the performance comparison among TSTE,
OTSTE and Berkeley DB, we added an idle loop to
the end of each TPC-C transaction, and measured
the total elapsed time of completing a sequence of
10,000 transactions. By adding an idle loop into
each TPC-C transaction, we simulate transactions
with larger computation versus disk I/0 rate. Ta-
ble 7 shows the performance comparison among
TSTE, HTSTE, OTSTE and Berkeley DB in terms
of transaction throughput and average lock wait-
ing time for the following two cases: a 0-msec idle
loop and a 30-msec idle loop When the transaction
CPU time is small (0-msec case), TSTE’s additional
processing overhead does not cause serious perfor-

System Throughput (tpmC) Average Lock Waiting Time (msec)
Idle Loop | TSTE | HTSTE | OTSTE | Berkeley DB | TSTE | HTSTE | OTSTE | Berkeley DB
0 msec 9662 9686 6869 3648 11.8 11.2 20.5 58.9
30 msec 7490 6507 5787 3650 14.7 16.3 26.2 56.6

Table 7: System throughput and average lock waiting time for neword transaction with different idle loop
padding. w = 5. Buffer hit rate is 99.7%. Concurrency is four.

Transaction Type Neword | Payment | Slev Ostat | Delivery
Memory Usage (w = 1) 184 48 1340 64 344
Memory Usage (w = 5) 370 66 2305 104 534

Table 8: The average physical memory requirement for each transaction instance of the five types of tran-
sactions in the TCP-C benchmark. All numbers are in terms of Kbytes.

mance problem, and therefore TSTE always out-
performs Berkeley DB. On the other hand, the op-
timistic optimization of OTSTE is not particularly
useful when compared to TSTE or HTSTE in this
case. Also, HTSTE and TSTE have similar perfor-
mance. However, when the transaction CPU time
is high (30-msec case), the performance difference
between TSTE and Berkeley DB decreases because
TSTE’s additional processing overhead erodes a sig-
nificant portion of its performance gain from lock
contention delay reduction. In this case, OTSTE
performs worse than TSTE and HTSTE, as the cost
reduction in redundant execution cost does not com-
pensate for the additional lock contention overhead
it adds. OTSTE in general requires more lock acqui-
sitions/releases than TSTE because those lock ac-
quisitions/releases made optimistically need to be
performed twice when physical disk I/O and thus
rollback occurs. HTSTE exhibits a similar prob-
lem, but to a lesser degree, and thus shows worse
throughput than TSTE. A similar trend is observed
in the w = 1 configuration.

When data is brought into main memory in the fetch
stage TSTE pins down those buffer pages to ensure
that they remain available in the operate stage. Ta-
ble 8 shows the average physical memory usage of
each transaction type in TPC-C, and shows that
the maximum physical memory requirement for a
TSTE-based system running 100 transactions si-
multaneously 1s about 230 Mbytes, which is rela-
tively modest for state-of-the-art server-class ma-
chines. Therefore the additional memory pressure
that TSTE introduces is less of an issue in practice.

5 Conclusion

This paper presents the design, implementation,
and evaluation of a novel transaction execution en-
gine called Charm that attempts to reduce the lock
contention delay due to disk I/O to the minimum.
The basic idea is to separate disk I/O from lock
acquisition /release so that a transaction is not al-
lowed to compete for locks unless all its required
pages are guaranteed to be in memory. With this
execution strategy, the lock contention delay and
thus the response time of individual transactions
are significantly reduced. The total elapsed time
for completing a given number of transactions also
improves accordingly. Specifically, this paper makes
the following contributions:

e We have developed a general two-phase trans-
action execution (TSTE) scheme to minimize
the performance impact of disk I/O on lock con-
tention, and several of its variants to address
TSTE’s redundant computation and unneces-
sary rollback problems.

e The TSTE prototype is the first known im-
plementation of a two-phase transaction execu-
tion scheme that effectively decouples lock con-
tention from physical disk 1/0.

e Empirical performance measurements of the
TCP-C benchmark on a working TSTE pro-
totype demonstrate that the best variant of
TSTE, HTSTE, can out-perform standard 2PL
implementation by up to 164% in terms of
transaction throughput, and the optimistic
version of TSTE (OTSTE) actually performs
worse than generic TSTE and Hybrid TSTE
because extra lock contention overhead for
OTSTE exceeds the saving in redundant trans-

action computation when the computation time
is comparable or less than disk I/O time.

e TSTE best fits those applications with
“medium” physical disk I/O. It cannot improve
the performance a lot when storage system is
the performance bottleneck.

One performance aspect of transaction processing
systems that this research ignores is the I/O over-
head associated with transaction commits. While it
is a standard industry practice to reduce the com-
mit 1/O cost using group commits, the batch size
chosen 1s typically much smaller than is used in
this work. We have developed a track-based logging
scheme [16] to minimize the performance impacts of
the disk I/Os resulting from transaction commits,
and plan to integrate TSTE with track-based log-
ging to solve the performance problems of both read
and write I/Os in high-performance transaction pro-
cessing systems.

6 Acknowledgments

We would like to thank Wee Teck Ng, our shep-
herd Margo Seltzer, and our anonymous reviewers
for their valuable feedbacks. We also appreciate the
technical support team of Sleepycat Software for re-
plying to our questions regarding the Berkeley DB
package.

References

[1] Berkeley DB
http://www .sleepycat.com.

package,

[2] Seltzer, M.; Olson, M., “LIBTP: Portable,
Modular Transactions for Unix,” Proceedings
of the Winter 1992 USENIX Conference, p. 9-
25, San Francisco, CA, USA 20-24 Jan. 1992.

[3] Bernstein, A.J.; Wai-Hong Leung; Gerstl, D.S.;
Lewis, P.M., “Design and performance of an
assertional concurrency control system, Pro-
ceedings 14th International Conference on Data
Engineering, p. 436-45, Orlando, FL, USA 23-
27 Feb. 1998.

[10]

Badrinath, B.R.; Ramamritham, K., “Synchro-
nizing transactions on objects,” IEEE Transac-
tions on Computers, vol.37,n0.5, p. 541-7, May
1988.

Herlihy, M., “Apologizing versus asking per-
mission: optimistic concurrency control for
abstract data types,” ACM Transactions on
Database Systems, vol.15, no.l, p. 96-124,
March 1990.

Kung, H.T.; Robinson, J.T., “On optimistic
methods for concurrency control,” ACM Tran-
sactions on Database Systems, vol.6, no.2, p.

213-26, June 1981.

Smith, J.E.; Weiss, S.; Pang, N.Y., “A simu-
lation study of decoupled architecture comput-
ers,” IEEE Transactions on Computers, vol.C-

35, no.8, p. 692-702, Aug. 1986.

Mitra, T.; Yang, C.K., “File system exten-
sions for application-specific disk prefetching,”
ECSL-TR-64, Computer Science Department,
SUNY at Stony Brook, January 1999.

Jung-Ho Ahn; Hyoung-Joo Kim, “SEOF: an
adaptable object prefetch policy for object-
oriented database systems,” Proceedings 13th
International Conference on Data Engineering,

p- 4-13, Birmingham, UK. April 7-11, 1997.

Kimbrel, T.; Cao, P.; Felten, E.W.; Karlin,
A.R.; Li, K., “Integrated parallel prefetching
and caching,” Performance Evaluation Review,

vol.24, no.1, p. 262-3, ACM May 1996.

Lehman, P.L.; Yao, S.B., “Efficient locking for
concurrent operations on B-trees,” ACM Tran-
sactions on Database Systems, vol.6, no.4, p.

650-70, Dec. 1981.

Franaszek, P.A. et al. “Concurrency control for
high contention environments,” ACM Transac-
tions on Database Systems, June 1992. vol.17,
no.2, p. 304-45.

Franaszek, P.A. et al. “Access invariance and
its use in high contention environments,” Pro-
ceedings of Sixth International Conference on
Data Engineering, p. 47-55, Los Angeles, CA,
USA 5-9 Feb. 1990.

Reuter, A., “The transaction pipeline proces-
sor,” Proceedings of the International Work-
shop on High Performance Transaction Sys-

tems, Pacific Grove, CA, Sep. 1985.

[15]

Chang, F.; Gibson, G.A., “Automatic I/0O
hint generation through speculative execu-
tion,” Proceedings of Third Symposium on Op-
erating Systems Design and Implementation, p.

1-14, New Orleans, LA, USA 22-25 Feb. 1999.

Chiueh, T.; Huang, L.; “Trail: A Fast Syn-
chronous Write Disk Subsystem Using Track-
based Logging,” ECSL-TR-68, Computer Sci-
ence Department, SUNY at Stony Brook, June
1999.

Olson M.; Bostic K.; Seltzer M., “Berkeley
DB,” Proceedings of the 1999 Summer Useniz
Technical Conference, Monterey, California,

June 1999.

