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ABSTRACT

Software robustness has significant impact on system
availability. Unfortunately, finding software bugs is a
very challenging task because many bugs are hard to re-
produce. While debugging a program, it would be very
useful to rollback a crashed program to a previous execu-
tion point and deterministically re-execute the “buggy”
code region. However, most previous work on rollback
and replay support was designed to survive hardware or
operating system failures, and is therefore too heavy-
weight for the fine-grained rollback and replay needed
for software debugging.

This paper presents Flashback, a lightweight OS ex-
tension that provides fine-grained rollback and replay to
help debug software. Flashback uses shadow processes
to efficiently roll back in-memory state of a process, and
logs a process’ interactions with the system to support
deterministic replay. Both shadow processes and logging
of system calls are implemented in a lightweight fashion
specifically designed for the purpose of software debug-
ging.

We have implemented a prototype of Flashback in
the Linux operating system. Our experimental results
with micro-benchmarks and real applications show that
Flashback adds little overhead and can quickly roll back
a debugged program to a previous execution point and
deterministically replay from that point.

1 Introduction

As rapid advances in computing hardware have led to
dramatic improvements in computer performance, issues
of reliability, maintainability, and cost of ownership are
becoming increasingly important. Unfortunately, soft-
ware bugs are as frequent as ever, accounting for as
much as 40% of computer system failures [45]. Software
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bugs may crash a production system, making services
unavailable. Moreover, “silent” bugs that run unde-
tected may corrupt valuable information. According to
the National Institute of Standards and Technology [48],
software bugs cost the U.S. economy an estimated $59.5
billion annually, approximately 0.6% of the gross domes-
tic product! Given the magnitude of this problem, the
development of effective debugging tools is imperative.

Software debugging has been the focus of much re-
search. Popular avenues of such research include detec-
tion and analysis of data races [7, 23, 46, 63, 68, 69, 74],
static compiler-based techniques to detect potential
bugs [20, 24, 31, 36, 64, 76] possibly aided by static
checking of user-directed rules [19, 27, 81], run-time
checking of data types to detect some classes of memory-
related bugs [41, 49], and more extensive run-time checks
to detect more complex program errors [28, 51]. These
studies have proposed effective solutions to statically or
dynamically detect certain types of software bugs.

Even though previous solutions have shown promising
results, most software bugs still rely on programmers to
interactively debug using tools such as gdb. Interactive
debugging can be a very challenging task because some
bugs occur only after hours or even days of execution.
Some of them occur only with a particular combination
of user input and/or hardware configurations. More-
over, some bugs, such as data races, are particularly
hard to find because they only occur with a particular
interleaved sequence of timing-related events.

These problems motivate the need for low-overhead
debugging support that allows programmers to rollback
to a previous execution point and re-execute the buggy
code region. A deterministic replay recreates the precise
conditions that lead to the bug and helps to understand
the causes of the bug. In most debugging tools today, if
an error occurs, the program needs to be restarted from
the very beginning and may take hours or even days
to reach the buggy state. If the bug is time-related, the
bug may not occur during re-execution. It would be very
useful if an interactive debugger such as gdb can period-
ically checkpoint the process state of the debugged pro-
gram during its dynamic execution. If an error occurs,
the programmer can request gdb to rollback to a previ-



ous state and then deterministically replay the program
from this state so that the programmer can see how the
bug manifests in order to catch its root cause.

Though system support for rollback and replay has
been studied in the past, most previous approaches are
too heavy-weight to support software debugging. The
main reason is that these approaches are geared toward
surviving hardware or operating system failures. There-
fore, most of these systems checkpoint program state
to secondary storage such as disk, remote memory or
non-volatile memory [3, 10, 12, 34, 37, 38, 39, 54, 61,
77, 79, 82]. Correspondingly, these systems incur far
higher overhead than is necessary or permissible to sup-
port software debugging. Unlike hardware/OS failures,
we only need to rollback and replay a program when it
crashes due to software bugs. Moreover, most previous
systems cannot afford frequent checkpointing because of
the high overheads involved in these approaches. As a
result, applications may have to roll back to a point in
the distant past (e.g., 1-2 hours ago).

Besides checkpointing systems, other work on roll-
back support — such as transaction support for main-
memory data structures [11, 29, 40, 43, 60, 62], system
recovery [9, 42, 65, 72] or logging and replay of system
events [6, 33, 50, 66, 70] — either have problems similar to
previous checkpointing systems or require applications
to be rollback-aware. These limitations hinder the ef-
fectiveness of these solutions for software debugging of
general programs.

In this paper, we present a lightweight OS extension
called Flashback that provides rollback and determin-
istic replay support for software debugging. In order
to efficiently capture the in-memory state of an execut-
ing process, Flashback uses shadow processes to replicate
a program’s execution state. Moreover, Flashback also
captures the interactions between a program and the
rest of the system — such as system calls, signals, and
memory mapped regions — to allow for subsequent de-
terministic re-execution. We have developed a prototype
of our proposed solution in the Linux operating system
that implements a subset of the features. Our experi-
mental results with micro-benchmarks and real applica-
tions show that our system adds little overhead and can
quickly roll back to a previous execution point.

As an example of how deterministic replay support
can be used for debugging, we also explore the necessary
extensions to gdb in order to provide user support for
checkpointing, rollback and deterministic replay. These
extensions will allow programmers to roll back a pro-
gram to a previous state when something has gone awry,
and interactively replay the buggy code region. With
such support, the programmer does not need to restart
the execution of the program or to worry about the re-
producibility of the bug.

This paper is organized as follows. Section 2 describes
the motivation and background of our work. Section 3
presents an overview of Flashback, and sections 4 and 5
describe in greater detail our approach for rollback of

state and deterministic replay. Section 6 presents the
experimental results. Section 7 discusses the modifica-
tions that have been made to gdb in order to control
logging, rollback and recovery from within the debugger.
Section 8 concludes the paper with a brief discussion of
our experience as well as plans for future work.

2 Background and Related Work

Our work builds upon two groups of research: system
support for debugging and system support for rollback.
In this section we discuss closely related work done in
these two directions.

2.1 System Support for Debugging
Software debugging has been the subject of substantial
research and development. Existing approaches mainly
include compile-time static checking, run-time dynamic
checking and hardware support for debugging. Some
representative compile-time static checkers were pro-
posed by Wagner [75, 76], Lujan [44] Evans [21], En-
gler [19, 27, 81]. Examples of run-time dynamic check-
ers include Rational’s Purify [30], KAI's Assure [35],
Lam et. al’s DIDUCE [28, 51] and several oth-
ers [41, 49, 15, 53, 58, 63]. Recently, several hardware
architecture techniques have been proposed to detect
bugs [26, 1, 14, 47, 56].

While these compile-time, run-time or hardware tech-
niques are very useful in catching certain types of bugs,
many bugs still cause the programmer to rely on inter-
active debuggers such as gdb. To characterize timing-
related bugs such as race conditions, simply rerunning
the program with the same input may not reproduce the
same bug. Moreover, some bugs may appear only after
running the program for several hours, making the de-
bugging process a formidable task. To understand and
find root causes of such bugs, it is very useful to provide
system support for reproducing the occurring bug, which
may only appear for a particular combination of user in-
puts and configurations or after a particular interleaved
sequence of time-related events.

One effective method to reproduce a bug is to roll
back to a previous execution state in the vicinity of the
buggy code, and deterministically replay the execution
either interactively inside a debugger or automatically
with heavy instrumentation. This requires an efficient
rollback and deterministic replay mechanism.

2.2 System Support for Rollback

Rollback capability is provided in many systems in-
cluding checkpointing systems, main-memory transac-
tion systems and software rejuvenation.

Checkpointing has been studied extensively in the
past. Checkpointing enables storing the previous exe-



cution state of a system in a failure-independent loca-
tion. When the system fails, the program can restart
from the most recent checkpoint in either a different
machine or the same machine after fixing the cause
of the failure. Since most checkpointing systems as-
sume that the entire system may fail, checkpoint data
is stored either in disks [12, 34, 37, 38, 39, 79, 61], re-
mote memory [3, 54, 82] and non-volatile or persistent
memory [10, 80]. As a result, most checkpoint systems
incur high overhead and cannot afford to take frequent
checkpoints. They are, therefore, too heavy-weight to
support rollback for software debugging.

Systems that provide transaction support for main-
memory data structures also allow applications to roll-
back to a previous execution point [11, 29, 43, 60, 62].
For example, Lowell and Chen have developed a sys-
tem that provides transaction support in the Rio Vista
recoverable virtual memory system [11, 43]. Most of
these approaches require applications to be written us-
ing the transaction programming model; consequently
they cannot be conveniently used for debugging a gen-
eral program.

Borg et al developed a system [5] that provides fault
tolerance by maintaining an inactive backup process. In
the event of a system failure, the backup process can take
over the execution of a process that crashes. The backup
process is kept up-to-date by making available to it all
the messages that the active process received. Their im-
plementation is based on the assumption that two pro-
cesses starting from the same initial state will perform
identically upon receiving the same input. While this
assumption holds for recovery-based systems, it is not
the case for general software since the state of the rest
of the system may have changed in the meantime. De-
terministic replay of a process requires that it receive
the same non-deterministic events during replays as dur-
ing the original run. These events include responses to
system calls, shared memory accesses, signals, network
messages et al.

Recovery-oriented computing [25, 52] is a recent re-
search initiative that adopts the approach that errors
are inevitable, so support for recovering from errors is
essential for developing and validating highly available
software. Though this is an interesting approach to soft-
ware availability, most studies in software rejuvenation
so far [4, 32, 57] have focused on restarting the whole ap-
plication rather than fine-grained rollback. Crash-only
software [8] is a recent approach to software development
that improves the availability of software by using com-
ponent building blocks that can crash and restart quickly
instead of aiming for fault tolerance. These studies fo-
cus more on minimizing mean-time-to-recovery (MTTR)
than on software debugging.

Feldman and Brown developed a system for program
debugging [22] that periodically checkpoints the mem-
ory state of a process by keeping track of pages touched
by the process. They propose using this system for pro-
gram restart and comprehensive execution path logging.
But their mechanism involves changes to the compiler,

loader, standard library and the kernel. It tracks all
memory accesses via code instrumentation and thereby
this approach is very heavy-weight. Further, they do not
provide deterministic replay; therefore, some errors may
not manifest themselves during subsequent re-execution.

Russinovich[59] suggests a lightweight approach to log
nondeterministic accesses to shared memory by merely
replaying the interleaved order of processes sharing the
memory deterministically. An application is instru-
mented to obtain fine-grained software instruction coun-
ters and the OS has to record the location of con-
text switches. This technique can be potentially used
by FlashBack to support the replay of shared-memory
multi-processed program.

ReVirt[17] is a novel approach to intrusion analysis
that encapsulates applications within a virtual OS that
itself runs as a process in the guest OS. This technique
decreases the size of the trusted computing base (TCB)
and allows precise logs to be maintained by the guest OS.
Flashback is significantly different from ReVirt. First,
debugging support needs to checkpoint application state
on timescales(minutes) that are several orders of magni-
tude smaller than in ReVirt(days). Second, unlike Re-
Virt which has to contend with malicious intruders by
logging ”everything”, Flashback need only log changes
that are made by the application being debugged and
external events that affect its operation.

The constraints with existing system support for roll-
back motivate the need for a new lightweight, fine-
grained rollback and deterministic replay solution specif-
ically designed for software debugging.

3 Overview of Flashback

Flashback provides three basic primitives for debugging,
Checkpoint(), Discard(z) and Replay(z).

e stateHandle = Checkpoint (): Upon this call, the
system captures the execution state at the current
point. A state handle is returned so that the pro-
gram can later use it for rollback.

e Discard (stateHandle): Upon this call, the cap-
tured execution state specified by stateHandle is
discarded. The program can no longer roll back
to this state.

e Replay (stateHandle): Upon this call, the process
is rolled back to the previous execution state speci-
fied by stateHandle and the execution is determin-
istically replayed until it reaches the point where
Replay() is called.

To provide the above primitives, Flashback uses
shadow processes to efficiently capture the in-memory
execution state of a process at the specified execution
point. The main idea of shadow process is to fork a new
process at the specified execution point and this new pro-
cess maintains the copy of the process’s execution state



in main memory. Once a shadow process is created, it
is suspended immediately. If rollback is requested, the
system kills the current active process and creates a new
active process from the shadow process that captured
the specified execution state. Since Flashback does not
attempt to recover from system crashes or hardware fail-
ure, there is no need to store the shadow process onto
disk or other persistent storage. This reduces the over-
head of the checkpoint process significantly. Moreover,
copy-on-write is used to further reduce the overhead.

While our method of checkpointing allows the in-
memory state of a process to be reinstated, the process
may not see the same set of open file descriptors or net-
work connections during re-execution. Even if the state
of file descriptors can be reproduced, it is still a cumber-
some task to restore the contents of the file to the orig-
inal state, and to ensure that network connections will
respond exactly as in the original execution. Similarly,
during replay it may be undesirable to let the process
affect the external environment again by, say, deleting
files or modifying their content.

In order to support deterministic replay of a rolled
back process, we adopt an approach wherein we record
all interactions that the executing process has with the
environment. During replay, the logged information is
used to ensure that the re-execution appears “identical”
to the original run. When a checkpoint is initiated us-
ing the checkpoint primitive, in addition to capturing
in-memory execution state, the system also records the
interactions between the process and its environment.
During replay, the previously collected information is
used to give the process the impression that the exter-
nal environment is responding exactly as it did during
the original execution, and that it is affecting the envi-
ronment in the same way.

Shadow processes can be used in conjunction with the
deterministic replay mechanism either within a debug-
ging environment like gdb, or through explicit calls made
by the program being debugged:

e Interactive debugging: One possible usage scenario
is where the debugging platform can periodically
capture the state of an executing process by invok-
ing checkpoint (similar to the insertion of break-
points in gdb, for instance). If an error occurs, the
programmer can then instruct the debugger to roll
back execution to a previously captured state by
specifying the time of the earlier checkpoint.

e FExplicit checkpointing and rollback: An alternate
usage scenario is that the programmer takes con-
trol of when checkpoints are taken in the code.
Figure 1 shows an example of a program where
the programmer has inserted explicit invocations to
checkpoint, replay and discard primitives.

Automatic checkpoint/rollback support inside an
interactive debugger is convenient and requires no
changes to the program source code. On the other

1 checkpoint (1) ;
2 fd = open(“file.dat”, O WRONLY, 0);

n = write(fd, buf, 80);
close(fd) ;

5 fd = cpen(“file.dat”, O RDONLY, 0);

n2 = read(fd, buf2, 80);

6

7 if (n2 > 0)

8 discard (1) ;
9 else

10 replay (1) ;

Figure 1: Code for a process augmented with primitives

hand, giving the programmer explicit control on check-
points/rollbacks enables more intelligent and meaningful
checkpoint generation.

Figure 1 shows a program in which the programmer
calls checkpoint in line 1. If the read operation in line
6 fails, the programmer can roll back to the execution
state captured at line 1. To help characterize the bug,
the execution from line 1 to line 6 can be replayed de-
terministically by attaching an interactive debugger or
switching to a profiling mode with extensive instrumen-
tation. If line 6 succeeds, the checkpoint is discarded.

4 Rollback Using Shadow Processes

4.1 The Main Idea

Flashback creates checkpoints of a process by replicat-
ing the in-memory representation of the process in the
operating system. This snapshot of a process, known
as the shadow process, is suspended immediately after
creation and is stored within the process structure. A
shadow process represents the passive state of the exe-
cuting process at a previous point, and can be used to
unwind the execution of the process by replacing the new
execution state with the shadow state and commencing
execution in the normal fashion. If a shadow state is not
needed anymore, the process can discard it.

The creation of a shadow process for a running pro-
cess, an event we refer to as state-capture, is achieved
by creating a new shadow process structure in the ker-
nel, and initializing this structure with the contents of
the original process’ structure. The state information
captured includes process memory (stack, heap), reg-
isters, file descriptor tables, signal handlers and other
in-memory state associated with a process. A pointer
to this shadow structure is then stored in the original
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Figure 2: Effect of the primitives on the state of an executing
process. When checkpoint is invoked, the process makes a clone
of its execution state. Upon discard the shadow is removed; if a
rollback occurs, the original execution state is discarded.

process’ structure. The new representation of a process
with its shadow process is shown in figure 2.

The checkpoint, discard and replay calls are either
automatically generated by the debugging infrastructure
at specific intervals, or inserted by the programmer in
the source code (as shown in the example in the previous
section). In case of a discard, the system discards the
specified shadow state. If a checkpoint is requested, the
system creates a new shadow of the current state and
stores it. In the case of a rollback, the process rolls back
the execution state to the previously generated shadow
process. Figure 2 illustrates the effect of these primitives
on the state of a process.

It is possible to maintain two or more shadow pro-
cesses for an executing process. Multiple shadow
processes are useful for progressive rollback and re-
execution during debugging [78]. In some cases, when
an error occurs, rolling back to only the most recent ex-
ecution point before replay may not be enough to catch
the root of the bug because it could have happened be-
fore this execution point. Therefore, it is necessary to
roll back further and deterministically restart from an
earlier execution point. It is also possible to roll back
to the same shadow multiple times and cause additional
checkpoints to be taken during replay.

To reduce overhead, shadow process state is main-
tained using copy-on-write. In other words, state cap-
ture proceeds through the creation of an in-memory
copy-on-write map of the current state. When a shadow
process is created, the virtual memory of the process is
marked as read-only. A first write to any page by the
active process would trigger the creation of a copy of
the old data. This optimization has a couple of bene-
fits. First, the time to create a shadow is significantly
reduced by eliminating the need t0 copy possibly large
amounts of memory state. Second, a shadow process
occupies little space(in memory). Third, multiple shad-
ows created at different execution points do not need
to maintain duplicate copies of the state. Finally, the
significant overlap in memory pages between a shadow
process and the active process minimizes the impact on
the paging behavior of the process due to discard/replay
of state. However, writes onto copy-on-write protected
memory during execution of the main process does in-
cur overhead. Fortunately, our experimental results pre-

sented in Section 6 show that these overheads are not
significant.

4.2 Rolling back multi-threaded pro-
cesses

Rollback of a multi-threaded process requires special at-
tention. This is because in a multi-threaded environ-
ment several components of the process state are implic-
itly shared across all threads that belong to the same
process. For example, threads implemented using the
pthread package on Linux, share memory, file descriptors
and signal handlers with each other. The only thread-
private states are user-space (and kernel) stacks. Such
implicit sharing vastly complicates rollback because it
is no longer possible for a thread to revert to pristine
versions of the shadow state without impacting the exe-
cution of other threads.

There are two approaches to support fine-grained roll-
back of multi-threaded programs. One is to capture
the process state for the entire process and roll back
all threads to a previous execution point. The second
approach is to track thread dependencies such as mem-
ory read-write and file read-write dependencies and roll
back only those threads that depend on the erroneous
thread [2, 16, 18, 67, 70].

Flashback uses the first approach to support rollback
of multi-threaded programs. In other words, the under-
lying system captures the execution state of all threads
of a process at a checkpoint. Likewise, when a roll-
back occurs, Flashback re-instates the execution state
of all threads by reverting back to a pristine copy of the
shared state. This enables maintenance of consistent
state among all threads. Thread synchronization prim-
itives, such as acquiring/releasing locks and semaphore
operations are also implicitly rolled back.

Our approach has several advantages over the alter-
native for software debugging, even though rolling back
all the threads of a process when only one of them en-
counters an error, may seem inefficient. First, our ap-
proach is simpler because it does not require compli-
cated logic to keep track of thread dependencies. Track-
ing thread dependencies is very difficult because concur-
rent accesses to shared memory are not handled through
software or some specialized cache coherence controller.
Tracking dependencies requires either hardware support
or instrumentation of application binary code to notify
the operating system about data sharing. The logic to
track dependencies adds overheads to the error-free ex-
ecution and is also error-prone. Second, to characterize
thread synchronization or data races, it might be more
informative to roll back all threads and deterministically
re-execute all threads step-by-step interactively. Fur-
thermore, the inefficiency of rolling back all threads is
encountered only when faults occur - the less common
case, while dependency tracking, if done dynamically
would lead to overhead on the common case.



4.3 Implementation in Linux

We have modified the Linuz 2.4.22 kernel by adding
three new system calls — checkpoint (), discard() and
replay() to support rollback and replay. The kernel
handles these functions as described earlier. The over-
head of these system calls on normal process execution
is an important consideration in our implementation.

To capture shadow state, we create a new process con-
trol block (task_struct in Linux terminology) and ini-
tialize it with a copy of the calling process’s own struc-
ture. This copy involves creation of copy-on-write maps
over the entire process memory via the creation of new
mm_struct, file_struct and signal_struct. The register
contents of the current execution context when it was
last in user-space are copied onto the new control block
and finally the kernel stack of the new control block
is initialized by hand such that the shadow process,
when executed, continues execution by returning from
the checkpoint system call with a different return value.

The state capture procedure is different from the fork
operation in several ways. The primary difference is that
after a fork operation, the newly created process is visi-
ble to the rest of the system. For instance, the module
count is incremented to reflect the fact that the child
process is also sharing the same modules. The newly
created process is added to the scheduler’s run lists and
is ready to be scheduled. In contrast, a shadow process
is created only for maintaining state. It is not visible
to the rest of the system and does not participate in
scheduling.

After capturing a shadow state, the calling process
returns from the system call and continues execution as
normal, with the shadow image in tow. Any changes
made to the state after the checkpoint leave the shadow
image in its pristine state.

A call to the discard () system call deletes a process’s
shadow image and releases all resources held by it. The
replay () system call, on the other hand, drops the re-
sources of the current image, and overwrites the pro-
cess control block with the previously captured shadow
image. Since the memory map of the current process
changes during the call, the page tables corresponding
to the new mme_struct are loaded by a call to switch_mm.

A subtle result of reinstating the shadow image is that
the replay () system call never returns to the caller. As
soon as the shadow becomes active for the caller, the
return address for the replay () call is lost (it was part
of the speculative state), being replaced instead with
the return address of the checkpoint () call that corre-
sponds to the state that the process is rolling back to.

When we implemented rollback support for multi-
threaded programs in Linux, we encountered many chal-
lenges because of the design of Linux thread package
that our implementation is based on: pthreads. In this
thread package, there is a one-to-one mapping between
user-space and kernel-space threads, i.e. each user-space
thread has an executable process counterpart inside the

kernel. State sharing is achieved by using the clone sys-
tem call to create lightweight processes that share access
to memory, file descriptors and signal handlers among
other things. POSIX compliance, with respect to deliv-
ery of signals (and other requisites), is ensured by creat-
ing an LWP thread manager that is the parent of all the
threads (LWP’s) associated with a process. While the
one-to-one mapping allows the thread library to com-
pletely ignore the issue of scheduling between threads at
user-space, it presents several complications for rollback.

Recall that when one thread attempts to process a
checkpoint event, we need to capture the state of all the
other threads of that process. Since every user-space
thread is mapped to a kernel thread, the other threads
may be executing system calls or could be blocked in-
side the kernel waiting for asynchronous events (sleep-
SIGALRM, disk IO etc.). Capturing the transient state
of such threads could easily lead to state inconsistency
upon rollbacks, such as rolling back to a sleeping state
when the corresponding kernel timer has already ex-
pired!. It is difficult to capture the state of an execution
context from within a different execution context.

We are currently exploring a solution to this prob-
lem by explicitly identifying such troublesome scenarios
and manipulating the user-space and kernel stacks to
ensure that the interrupted system call is re-executed
upon rollback. Specifically, threads that are blocked in
system calls are checkpointed as if they are about to
begin execution of this interrupted system call.

Notice that apparently simple solutions that circum-
vent this problem such as using inter-process communi-
cation or explicit barrier synchronization prior to state
capture are not applicable. In the former case, IPC
mechanisms such as signals and pipes increase the la-
tency of the state capture event because their processing
is usually deferred, and is often not deterministic. Bar-
rier synchronization on the other hand, would cause the
processing of a state capture event to be delayed until
the event is generated on all the threads of a process,
which might be unrealistic in certain applications.

5 Replay Using Record-and-Sandbox

5.1 The Main Idea

In order to deterministically replay the execution of a
process from a previous execution state, we need to en-
sure during re-execution that the process perceives no
difference in its interaction with the environment. For
instance, if the process did a read on a file and received
a particular array of bytes, during replay, the process
should receive the same array of bytes and return value
as before, though the file’s contents may have already
been changed.

'sleep on Linux is implemented using nanosleep which
swaps out the process after adding a timer onto the kernel’s
timer list



Flashback does not ensure exactly the same execu-
tion during replay as during the original run. Instead,
Flashback provides only an impression to the debugged
process that the execution and interaction with the en-
vironment appears identical to those during the original
run. It is difficult to provide the exact same execution
because the external environment, such as network con-
nections or device states, etc, is beyond the control of the
operating system. As long as Flashback interacts with
the debugged process in the same way, with very high
probability, the bug can be reproduced during replay.

A process in Flashback can operate in one of two
modes - log and replay. In the log mode the system
logs all interactions of the process with the environ-
ment. These interactions can happen through system
call invocations, memory-mapping, shared memory in
multi-threaded processes, and signals. The process en-
ters the log mode when the checkpoint primitive is in-
voked. In the replay mode, the kernel handles system
interactions of the process by calling functions that sim-
ulate the effect of the original system call invocation.
The replay mode is selected when the replay primitive
is invoked. In this mode, Flashback ensures the inter-
action between the replayed process and the OS is the
same as was logged during the original run.

5.2 System calls

Logging and replay are different for different types of
system calls:

e Filesystem-related — Calls such as open, close, read,
write, seek

e Virtual memory-related, such as memory alloca-
tion, mmap etc.

e Network-related — such as socket creation, polling,
send, recv etc.

e Process control — such as exec, fork, exit, wait

e Interprocess communication-related — such as cre-
ation and manipulation of message queues and
named pipes

o Utility functions — such as getting the time of day

When simulating the effect of a system call, Flash-
back has to ensure that the values returned by the sys-
tem call are identical to those returned during the origi-
nal execution. In addition, the original system call may
return some “hidden” values by modifying memory re-
gions pointed to by pointer arguments. For example,
the read() system call loads the data from the file sys-
tem into the buffer specified by one of the parameters.
These side effects also need to be captured by Flash-
back. A faithful replay of a system call thus requires
Flashback to log all return values as well as side-effects.
While somewhat tedious because of the special attention

required by each system call to handling its specific ar-
guments, this support can easily be provided for a large
body of system calls.

In Flashback, we intercept system calls invoked by a
process during its execution. In order to do this, we
replace the default handler for each system call with
a function that does the actual logging and replay as
shown in figure 3. In logging mode, the function invokes
the original call and then logs the return values as well
as the side-effects. In replay mode, the function checks
to confirm that the same call is being made again, and
then makes the same side-effects and returns the logged
return value.

System call
handler Hijacker

User-level process

Original
Handler

Figure 3:
Flashback

Hijacking System Calls for Logging and Replay in

A notable exception to bypassing the actual system
calls during replay is for calls related to memory manage-
ment, such as memory mapping and heap management.
In this situation we cannot fake memory allocation —
if the process accesses a memory location that we have
faked the allocation of, then it will result in a segmenta-
tion fault. This problem arises because while memory is
allocated and deallocated using the brk() system call,
it may be accessed through direct variable assignments.
The changes made to memory locations do not make any
permanent changes to the system; i.e. the state is cap-
tured by a process’ checkpoint exclusively. As we discuss
shortly, however, this may not be the case for files that
have been mapped into memory.

Once system calls have been handled, much of the pro-
cess’ original execution can be replayed. For instance,
the process being replayed can read data from files as it
did before even though these files may actually have been
modified or may not even exist in the system anymore.
Similarly, it will receive network packets as it originally
did from remote machines. As far as the process is con-
cerned, it believes that these events are happening as
they did before in terms of both actual data exchanged
and the relative timing of asynchronous events.



5.3 Memory-Mapped Files and Shared
Memory

Linux supports two different flavors of shared memory
for interprocess communication — System V IPC and
BSD mmap. These implementations allow processes to
share a single chunk of memory by mapping the shared
memory onto their respective memory spaces. BSD
mmap allows processes to map a previously opened file
into a region of its memory, after which it can access
the file using simple memory assignment instructions.
When a shared segment is requested, the kernel forces
the memory management unit (MMU) to generate a
page fault every time a previously unused section of this
memory region is accessed. In response to the page fault,
the kernel loads one page of data from the file and reads
it into the process’ memory.

A file may be mapped as either private or shared. Any
changes made to privately mapped files are visible only
to that process and do not result in changes to the file.
On the other hand, files that are mapped as shared may
be modified when the process writes to the memory area.
Further, for shared files, changes made to the file by a
processes will be immediately visible to other processes
that have mapped the same region of the file. Providing
replay for shared memory poses problems as a process
can access shared memory without making any system
calls, making it harder to track changes to the shared
memory and fake them later.

One simple solution for handling memory-mapped
files is to make copies of pages that are returned upon
the first page fault to a memory region mapped to a
file. During replay of requests to create memory maps,
the memory areas are mapped to dummy files, and page
faults are handled by returning saved copies of pages.
Due to the lazy demand-paging approach used by Linux,
only those pages that are accessed during execution need
to be copied, thus drastically reducing the overhead.
This approach will not work when the same region of
the file is mapped as a shared region by multiple pro-
cesses, each of which make changes to the region. This
approach works for files that have been mapped as pri-
vate, as well as shared mappings where all changes to
the file are made by the process being debugged.

Handling shared file-mappings with multiple processes
writing to the file is a more complicated problem, and
requires the kernel to force a page fault for every access
to the shared region by the process being replayed in-
stead of just the first access as in the earlier case. A
possible enhancement to the logging solution would be
to set the access rights of a given page to the last process
to access it, and thus only fault when another process
has accessed the page since this one. This way, several
successive reads or updates will only suffer one costly
exception instead of many. During replay, however, it
would still be required to fault for each access since the
other processes might not be around any more to make
their changes.

In Flashback, currently, we have implemented the sim-
ple solution described earlier. In spite of the enhance-
ment proposed for shared file-maps with multiple writ-
ers, we believe that an efficient solution to address this
challenge will require support from the underlying archi-
tecture. Shared memory can be dealt with using similar
mechanisms.

5.4 Multithreaded applications

While the techniques outlined above work for applica-
tions with a single thread of control, replaying multi-
threaded applications poses additional challenges. Log-
ging changes made by a multithreaded application in-
volves logging the changes of each thread of the de-
bugged process. During replay, the interleaving of
shared memory accesses and events has to be consistent
with the original sequence.

Ensuring that the multiple threads are scheduled in
the same relative order during replay is another issue.
For multi-threaded applications running on a single pro-
cessor system, we propose adopting the approach de-
scribed in [13] for deterministic replay. The basic idea
is to record information about the scheduling of the
threads during the original execution and use this in-
formation during replay to force the same interleaving
between thread executions. Since this implementation
would also be in the kernel, the physical thread sched-
ule is transparent and can be used in lieu of the logi-
cal thread schedule information proposed by [13]. We
will implement this in the future in the tool, possibly
with the support of architecture-level mechanisms such
as those described in [55].

5.5 Signals

Signals are used to notify a process about a specific
event, or to force the process to execute a special han-
dling code when an event is detected during its execu-
tion. Signals may be sent to a process either by another
process or by the kernel itself. Signals are asynchronous
and are delivered proactively to a process by the kernel.
They may be delivered at any time to a process. Signals
present a challenge for deterministic replay because sig-
nals are asynchronous events that affect the execution of
a process. The replaying mechanism has to ensure that
signals are delivered at exactly the same points during
re-execution as in the original execution.

Deterministic reproduction of signals may be handled
using the approach proposed by Slye and Elnozahy [66],
though Flashback does not currently support signal re-
play. The mechanism outlined in their work makes use of
an instruction counter to record the time between asyn-
chronous events. The instruction counter is included in
most modern processor systems today. When a signal
occurs, the system creates a log entry for it, which in-
cludes the value of the instruction counter since the last
system call invocation. During replay, Flashback checks



to see if the next log entry corresponds to a signal. If so,
then it initializes the instruction counter with the time
from the current system call till the signal. When a trap
is generated because of timeout, the kernel delivers the
signal to the process.

5.6 Implementation in Linux

We have implemented a prototype of Flashback’s replay
mechanism in Linux-2.4.22. The prototype handles re-
play of system calls as well as memory-mapped files to
a limited extent. In Linux, a user-space process invokes
a system call by loading the system call number into
the eax register and optional arguments in other reg-
isters, and then raising a programmed exception with
vector 128. The handler for this exception, the system
call handler, does several checks and then runs the func-
tion indexed in the sys_call_table array by the system
call number. It finally returns the results got from this
action to the user process.

We used syscalltrack [71], an open-source tool that
allows system calls to be intercepted for various purposes
such as logging and blocking. The core of the tool has
been implemented in a kernel module which “hijacks”
the system call table by replacing the default handlers
for some system calls with special functions. System
call invocations can be filtered based on several criteria
such as the process id of the invoking process as well
as values for specific arguments. System calls that need
to be logged are handled in a number of ways. At one
extreme, the special function may log the invocation of
the system call and let the call go through to the original
handler, while at the other it may block the system call
invocation and return a failure to the user process. The
actual behavior of the special function is controlled using
rules that may be loaded into the kernel.

In our implementation, we added a new action type
that the special function can perform, namely the
AT REPLAY action for replaying. This action verifies that
the system call invocation matches a call that the pro-
cess originally made, then sets the return value according
to the logged invocation and also makes the same side
effects on the arguments as before. By doing this, it by-
passes the actual system call handler for some system
calls and overrides its behavior with that of the simulat-
ing function. For other system calls such as the brk call,
Flashback allows the system calls to be handled by the
original system call handler since memory allocations
need to be made even during replay.

6 Evaluation

We evaluate our prototype implementation of Flashback
using microbenchmarks as well as real applications. The
timing data we present were obtained on a 1.8GHz Pen-
tium IV machine with 512KB of L2 cache and 512MB
of RAM.

6.1 Overhead of State—Capture

To perform a very basic performance evaluation
of the rollback capabilities, we instrumented the
checkpoint (), discard() and replay() system calls.
We then ran a small program that repeatedly invokes
checkpoint (), does some simple updates and then ei-
ther discards the checkpoint by calling discard() or
rolling back by calling replay().

Figure 4(a) presents the time for the three basic op-
erations: checkpoint, discard and replay. A checkpoint
takes around 25-1600us as the amount of state updates
between two consecutive checkpoints varied from 4KB
to 400MB. Since creation of a shadow process involves
creation of a copy-on-write map, the cost is proportional
to the size of the memory occupied by the process. Sim-
ilarly, the cost to discard or replay a shadow is propor-
tional to the size of memory modified by the process.

The costs of discard (replay) are also directly pro-
portional to the number of pages in the corresponding
checkpointed state (the current state). This is because
both discard and replay involve deletion of one copy-
on-write map. Our results show that discard and re-
play take around 28-2800us when the entire memory
is read, and between 28-7500us when the entire data
memory is written. The higher costs in the latter case
are because the kernel has to return a large number of
page frames to its free memory list when the shadow
state is dropped/reinstated. Typical applications will of
course not modify all pages in their address space be-
tween checkpoints, and so the costs of the discard and
replay operations will be closer to the lower end of the
range shown in Figure 4(b).

An important objective of our rollback infrastruc-
ture is to have minimal impact on normal applica-
tion performance. We therefore consider the data for
checkpoint() and discard() more important than
that for replay (). This is because the latter is invoked
only when errors occur, and will therefore not be part
of common-case behavior. Regardless, the overhead im-
posed by the rollback call is as low as that for shadow
state release. This is promising since it indicates we can
restore execution state as fast as common case check-
point discard.

6.2 Overhead due to Logging

In order to evaluate the logging overhead, we wrote a
simple test program that employs two threads in order
to isolate the impact of the logging overhead. In the
program, the parent thread forks and creates a child. It
then loads the rules for logging into the framework and
notifies the child to begin invoking system calls. The
rules allow the kernel to filter system call invocations
based on the process ID of the child.

While logging system calls that have side effects on
memory regions, such as read, stat and getsockopt,
Flashback also needs to record the contents of the buffer
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or structure. Thus, with regard to logging overhead,
there are two groups of system calls, those that cause
side effects on some memory regions, and those that
simply return a value after performing the intended ac-
tion. We refer to the first class of system calls as buffer-
copying (BC) and the second group as no-copying (NC).
For NC system calls, there is no need to record the con-
tents of buffers; just the system call ID and the return
values will suffice.

To study the overhead on every system call due to hi-
jacking and logging, we invoked the read and write sys-
tem calls several times, gradually increasing the number
of invocations. In each invocation, the number of bytes
read or written is 4 KB. For each run, we start with a
clean file cache in order to make the effect of caching
on system call overheads consistent. Figures 5 shows
the overhead imposed by the sandbox mechanism. The
overhead due to sandboxing occurs because of the extra
indirection of system calls imposed by Flashback. In-
stead of being handled directly by the system call han-
dlers, system call requests need to pass through filters
and the logging mechanism. The increase in overhead
is linear with the number of system calls for both the
system calls. The difference in slope between the two
lines on the graphs represents the extra per-system-call
overhead imposed due to logging. This is around 30 mi-
croseconds on an average.

To evaluate the effect that the copying of buffers has
on the logging overheads, we invoked the read and write

system calls repeatedly, gradually increasing the num-
ber of bytes read or written from 4 KB to 2 MB. The
actual number of system calls is small in this case. Fig-
ure 6 shows the overhead while varying the amount of
data read or written. The overhead for BC and NC sys-
tem calls is comparable, and the extra copying of buffers
does not appear to impose any extra overhead. This is
because the contents of the log are buffered, and writ-
ten to disk asynchronously. In these experiments, the
disk cache was warmed since all the data for the files
was prefetched before the actual execution. The values
therefore reflect reads and writes entirely involving the
cache only.
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Figure 7 shows the space overhead because of logging
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BC and NC calls. As expected, the growth in the size
of the log file is linear in terms of the number of system
calls, though the slope is greater for BC since more data
is written each time.

6.3 Application Results

In order to test our implementation of state-capture in
a realistic environment, we measure the performance
with the well-known Apache web-server. We evaluate
the system overhead for both multiprocess version and
multithread version of Apache. Our evaluation serves to
demonstrate two things: first, that fine-grained rollback
support, is possible, and can be applied to real appli-
cations; and second, that the performance impact on
common-case execution is minimal.

In all the experiments reported herein, the web server
is bottle-necked by the network and is serving data at
full network throughput of 100Mbps. We use these ex-
periments to show that off-the-shelf machines(1.8MHz,
512MB RAM) have enough spare cpu cycles to provide
fine-grained rollback without affecting client’s perceived
performance. The server is checkpointed multiple times
(typically thrice) during the processing of each request.
We essentially create a checkpoint just before reading
the HTTP request off a newly accepted socket, before
processing a valid HTTP request from an existing con-
nection and before writing out the HT'TP response onto
the socket. Thus, at any point of time, Flashback main-
tains as many shadow images as the total number of
requests being processed by the server. All data points
in this section have been averaged over three runs.

The Apache server can be configured to run in a mul-
tiprocess or multithread mode. In the former, Apache
maintains a pool of worker processes to service requests.
Each worker process is a single thread and the number of
workers in the pool is adapted dynamically based on load
estimates. However, in the latter, Apache uses a much
smaller pool of worker processes, with each worker pro-
cess consisting of multiple threads implemented by the
pthread package. We present here performance figures
for both configurations of the Apache server. In this
experiment, the web server checkpoints its state upon
the arrival of request for a page, processes the request,

and discards the checkpoint. These results reflect the
overhead of capturing state. Since Flashback currently
does not support replay of multithreaded execution and
shared memory, we disabled logging for replay during
these experiments.

To exercise the web server, we use an http request-
generating client application, WebStone [73], which
sends back-to-back requests to a single web server. Each
request constitutes a fetch of a single file, randomly se-
lected from a pre-defined “working set”. The working set
comprised files of sizes varying between 5KB and 5MB,
but the majority of requests constituted a fetch of 5KB.
The request generating application forks a pre-defined
number of client processes, each of which submits a se-
ries of random requests to the web server. The server
was run on a off-the-shelf 1.8GHz Pentium IV machine,
connected to the client via a 100Mbps LAN. Perfor-
mance was measured in terms of throughput, aggregate
response time and load on the server CPU. In all the
experiments reported here, the server was operating at
the full network throughput of 100Mbps.

We compare the Apache web-server on the prototype
system with a baseline system running the original ver-
sion of Linux. Figure 8 shows throughput and response
time in Flashback and the baseline system with Apache
running in multiprocess mode. It is clear from the
graphs that there is no significant difference between the
client-perceived throughput and response time. When
the number of clients is small, Flashback has 10% lower
throughput, even though the average response time is
the same as the baseline system. However, when the
number of clients increases, the difference between base-
line and Flashback disappears. In some cases, Flash-
back performs even better than the baseline system. We
consider these small differences well within expected ex-
perimental variance, and conclude that the impact of
rollback support on Apache performance is negligible.

Figure 9 shows the results for the multithread ver-
sion of Apache. As expected, the overheads imposed by
Flashback on multithreaded execution are slightly lower
than those for the multiprocess version, evidenced by
the throughput figures which more closely match one
another in most cases. This lower overhead is a direct
result of fewer effective system calls, because when one
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thread undergoes a capture event, the state of all the
other threads is automatically captured. Subsequent
capture-events on the other threads of this process are
treated as nops during the lifetime of this shadow pro-
cess. Hence the number of capture events necessary are
much fewer.

Although client-perceived system performance re-
mains almost unaffected, the kernel does perform extra
work each time a checkpoint is initiated. Of course, this
does not come for free. To quantify the cost, we moni-
tored CPU load average on the machine hosting the web-
server. The metric we use measures the average num-
ber of processes waiting on the run queue over the last
minute, which is an estimate of system load as it statis-

tically captures the amount of time each process spends
on the run queue. Figure 10 plots these results for the
multiprocess and multithread versions. The graphs ex-
pose the overhead in capturing shadow state, which in
our evaluation occurs very frequently (once every request
received by the server). Note that even though the cpu
utilization of the server increases by 2-4 times, the client
perceived performance, in both data bytes delivered and
time to respond, remains unchanged. We assert that the
experimental setup is realistic as modern web-servers are
often constrained by network bandwidth and have spare
cpu cycles.

In both the multiprocess and multithread configura-
tions, CPU load increases significantly. In the single-



threaded case, the extra load is quite high. This is be-
cause a multiprocess Apache webserver uses a collection
of separate Unix processes to handle web requests, each
of which now captures shadow state when handling a
request. In the multithreaded version, the state-capture
event occurs once for all threads of execution, because
we capture the state of all threads, en masse, each time a
checkpoint is taken. The smaller number of system calls,
and the smaller size of the state captured (per worker
thread), together contribute to the multithread configu-
ration exhibiting better CPU load than the multiprocess
configuration.

7 Using Flashback in gdb

Using Flashback, it is fairly straightforward to incorpo-
rate support for checkpointing, rollback and determinis-
tic replay into a debugging utility such as gdb.

We have modified gdb to support three new com-
mands — checkpoint, rollback, and discard, for creating
checkpoints, to support rollback and deterministic re-
play of debugged programs. Programmers can set up
breakpoints at places where they might want to create
checkpoints. At these breakpoints, after seeing the state
of the program, they can choose to create a new check-
point by using the checkpoint command. They can also
discard earlier checkpoints, thereby freeing system re-
sources associated with those checkpoints by using the
discard command. If they find the system state to be
inconsistent, they can roll back to an earlier checkpoint
by using the rollback command.

Using Flashback, gdb can be made to automatically
take periodic checkpoints of the state of the process be-
ing executing. New commands are added into the de-
bugger user interface to allow programmers to enable or
disable automatic checkpointing during execution of the
debugged program. Programmers also have control over
the frequency of checkpointing. This frees the program-
mer from having to insert breakpoints at appropriate
locations in the code and explicitly taking checkpoints.

In order to incorporate checkpoints into gdb, we made
changes to the target system handling component and
the user interface components. The target system han-
dling component handles the basic operations dealing
with the actual execution control of the program, stack
frame analysis and physical target manipulation. This
component handles software breakpoint requests by re-
placing a program execution with a trap. During ex-
ecution, the trap causes an exception which gives con-
trol to gdb. The user can choose to take a checkpoint
at this time. gdb does this by making a checkpoint
system call passing the process ID of the process being
debugged. Similarly, for rollback and replay, gdb uses
the rollback and replay system calls respectively.

For automatic checkpointing, in addition to these
changes, gdb maintains a timer that keeps track of time
since the last checkpoint. The timeout for the timer can
be set by the user. When a timeout occurs, gdb check-

points the process.

8 Conclusions and Future Work

In this paper we presented a lightweight OS extension
called Flashback to support fine-grained rollback and de-
terministic replay for the purpose of software debugging.
Flashback uses shadow process to efficiently capture in-
memory states of a process at different execution points.
To support deterministic reply, Flashback logs all inter-
actions of the debugged program with the execution en-
vironment. Results from our prototype implementation
on real systems show that our approach has small over-
heads and can roll back programs quickly.

Besides software debugging, our system can also be
used to improve software availability by progressively
rolling back and re-executing to avoid transient er-
rors [78]. In addition, our approach can be extended
to provide lightweight transaction models that require
only atomicity but not persistence.

We are in the process of combining Flashback with
hardware architecture support for rollback and deter-
ministic replay [56] to further reduce overhead. We
are also evaluating Flashback with more applications.
Flashback currently only works for programs that run
on a single machine. We are exploring ways to extend it
to support distributed client-server applications by com-
bining with techniques surveyed by Elnozahy et al. [18].

Flashback including the patches to both Linux and
gdb will be released to the open source community so
that other researchers/developers can take advantage of
Flashback in interactive debugging.
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