
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference

Monterey, California, USA, June 6–11, 1999

Meta —
A Freely Available Scalable MTA

Assar Westerlund
Swedish Institute of Computer Science

Love Hörnquist-Åstrand
Department of Signals, Sensors, and Systems, KTH

Johan Danielsson
Center for Parallel Computers, KTH

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org



Meta — a freely available scalable MTA

Assar Westerlund
Swedish Institute of Computer Science

assar@sics.se

Love Hörnquist-̊Astrand
Department of Signals, Sensors, and Systems, KTH

lha@s3.kth.se

Johan Danielsson
Center for Parallel Computers, KTH

joda@pdc.kth.se
Abstract

This paper describes the design and implementation of the
mail server Meta. It is intended to be a simple and secure
yet efficient and scalable mail server. It only handles re-
ceiving mails by SMTP and providing a POP server for the
user but tries to be fast at doing that.

1 Introduction

One of the oldest and still most popular applications on the
Internet is electronic mail (e-mail). More and more people
find e-mail to be a practical form of communication with
colleagues, companies, authorities, relatives, and friends.
For many people, e-mail has become the preferred means
of communication. And there are lots of mailing lists where
people interested in a particular topic can discuss it among
themselves. Also, people are depending more on e-mail ac-
tually working and getting to the recipient in a short amount
of time.

Lots of effort has been put into optimising other common
Internet applications, like web servers and proxies, news
servers, and others. But few have looked at how to handle
large volumes of mail for large number of users efficiently.
We think this popular application deserve some more atten-
tion.

2 What is the Problem?

The problem that is addressed (and/or solved) by Meta is
building a high-capacity, scalable, and secure mail-hub. A
mail-hub in this context is a server that receives mail des-
tined for users with the Simple Message Transfer Protocol
(SMTP)[11] from the Internet and that allow them to re-
trieve it with the Post Office Protocol (POP)[12] to their
local mail clients. In other words, Meta is an embedded
SMTP-server and POP-server. This is shown in figure 1.
Meta does not try to be a general-purpose MTA. Instead, it
tries to fulfil the particular need that we had and doing it

efficiently and while remaining simple and secure. While
performing a subset of what a general-purpose MTA does,
we think that there are a number of sites other than us that
require this functionality, such as companies or universities
with large number of mail users and above all, large ISPs.

Internet

Meta
SMTP

SMTP

SMTP

User

POP

Figure 1: Meta overview

The traditional way of building a mail hub is to run an
MTA such as sendmail[10] that receive mails. They are
then written in spool files by a local delivery program such
as mail.local. There exists a single flat file per user where
the incoming mails are stored. Each new mail is appended
to the end of this file. The mails are read from these files
and eventually deleted by the pop daemon when the users
fetch them to their mail clients with POP. But some users
and mail clients instead access the spool files directly on
the mail hub or through NFS [13]. Or they use IMAP [14]
or some other (and new) means of getting the mail. This
means that the mails have to be stored in the common
mbox-format so that all the programs that can access them
will understand the format.

With Meta we decided early that the only way of accessing



the mail would be with POP. This simplifies lots of things
and does not require storing mail in the mbox format. (The
benefits from this are quite similar to those described in [7]
regarding NNTP [15] and news spool files.)

3 Goals

• little (or no) configuration

We would like Meta do be as self-functioning as pos-
sible. This means not having to maintain complicated
configurations and/or do lots of tuning on the running
Meta. The configuration is now kept quite minimal.

• focus on solving a small and well-defined problem

This is a traditional UNIX approach. Meta itself
doesn’t relay mail, handle outgoing mail, or manage
mailing lists. These functions, which are of course
needed, will be implemented in separate programs.
Separating different functionality into different pro-
grams tend to make them simpler and more efficient.

• simple

The MTA should be simple to make it easy to re-
view for correctness, and to simplify a security-audit.
Lesser code makes it easier to write correct code. It
should also be simple to extend and give new func-
tionality.

• secure

An MTA is exposed to a large number of more or less
broken mail applications, as well as malicious people
trying to do evil things, but people trust mail to func-
tion and depend on it, so it is rather important that it is
reliable and secure.

• efficient

It should be possible to handle a large number of users
receiving very large number of mails on rather low-
end hardware.

• scalable

Scalability is an important point, it should not be nec-
essary to buy a faster computer just to be able to han-
dle more users, instead you should be able to cluster
mail servers to handle the additional load.

4 Non-Goals

• being a complete MTA

Which means not handling UUCP, address rewriting,
etc, etc.

• being configurable in every detail

There is not going to be a sendmail.cf to configure
Meta. Its sole purpose is to be able to receive mail
mail really fast.

• being compatible with old MTAs

The important point is using the protocols correctly,
the mail hub itself should be a rather dark box. Not
having to be compatible with old ways of doing things
(like /var/spool/mail/userand .forward) means being
able to try the solve the problems in new (and hope-
fully better) ways.

• sending and relaying mail

Separate programs will be written to handle these
tasks. They do not even have to run on the same
servers.

• handling mailing lists

There are already lots of programs that do this so we
have not found any need for writing a new one.

5 What is the Limit?

We wanted to get a feeling for how good performance it
would be possible to get out of a mail server running on a
common piece of hardware, say an ordinary PC. For this
purpose, we designed a simple benchmark for measuring
the time it would take to receive a single mail over an
SMTP connection, and also wrote a simple prototype of a
mail server. This mail server just receives mail and appends
it to spool files, one for each user. The file is also locked
at the beginning of reception and unlocked at the end. Af-
ter having written the complete mail, the file is fsync’ed
and close’d. The existence of a user is determined from
the existence of a spool file. It uses a state-machine written
around select.

The benchmark program sent a variable number of mails
of around 500 bytes to one of 10 different users in a round
robin fashion over the same SMTP connection. We mea-
sured the total elapsed time for this operation.

To get a rough comparison with other MTAs, we also per-
formed the same benchmark against sendmail 8.8.7. We
did not spend any time optimising the configuration of the
sendmail but just used a stock configuration file. We were
not after a heads-to-heads comparison but rather a simple
estimate of how Meta compared with sendmail. Both Meta
and sendmail ran on a 200 Mhz Pentium Pro with 48Mb of
memory, an IDE disk, and under FreeBSD 2.2.

The first tweak we made on our SMTP server was to re-
move the call to fsync to see how the speed would change
with not having to perform synchronous disk writes. As
can be seen in figure 2 the change is quite dramatic.



From around 200 mails/second it increases to around
1000 mails/second. And the slope of the curve is smaller a
well.

0

5

10

15

20

25

30

35

40

45

50

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

el
ap

se
d 

tim
e 

in
 s

ec
on

ds

number of mails

’meta-fsync-numbers’
’meta-nofsync-numbers’
’meta-nowrite-numbers’

Figure 2: Comparison sync, async, and no-write mail re-
ception

Actually, the extreme case would be to remove the disk I/O
completely to see how much of a bottleneck the I/O is. In
figure 2 it can be seen that the performance when using
asynchronous writes is quite close to that of not having any
disk activity at all, and quite far from the synchronous case.
Compare the asynchronous case with the no I/O case in this
figure and note how much more time the benchmark takes
when the writes are synchronous.

A possible optimisation at the SMTP protocol level is to
have the mail generator do SMTP pipelining [16]. This
means it does not have to wait for every reply to every
command before sending the next one and increases the
throughput, above all when the sender is fair away. Even in
our benchmark case where the sender is very close it makes
a difference as can be seen in figure 3. In practice, the sav-
ings from doing pipelining is largest when a lot of mails are
sent from the same host.

In summary, in table 1 are the approximate number of mails
per second it’s possible to receive with different configura-
tion, including the one running sendmail.

description mails/second
meta-fsync ˜ 200
meta-nofsync ˜ 1000
meta-nowrite ˜ 1200
meta-nofsync-pipe ˜ 2000
sendmail-8.8.7 2 – 10

Table 1: Receiving rates for different configurations

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

el
ap

se
d 

tim
e 

in
 s

ec
on

ds

number of mails

’meta-nofsync-numbers’
’meta-nofsync-pipe-numbers’

Figure 3: Comparison no-pipelining and pipelining

The conclusions from this experiment was that fsync is go-
ing to be important performance-wise and that it is possible
to write something that achieves quite a lot better perfor-
mance than sendmail.

How can we avoid the penalty associated with fsync?

• do not fsync

That is not a satisfactory solution because when you
acknowledge have received a mail you are not sup-
posed to be able to loose it. Users do not like dropped
mails.

• fork a different process and let it fsync

That might be doable but it would require the overhead
of fork instead of that of fsync.

• send the file descriptor to a running process

That seems like one of the best ways of resolving the
problem

• clustering

Have two or more nodes store copies of the mail. With
enough nodes running with UPSes storing the mail we
might say the system is reliable enough. Clustering is
discussed more in section 10.

6 Mail Storage

Meta stores the incoming mails in a series of fix-sized logs.
Each message is appended at the tail of a log. When writing
the mail is complete, an entry is written for every recipient
describing where to find it and in which log. A reference
counter is also kept for each message. It is set to the num-
ber of recipients when storing the mail and is decremented



���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

HH

H H

Figure 4: The mail logs

every time an user deletes the mail in a POP session. As
the mails are stored consecutively in the logs, only one
mail can be written to the same log at any time. The log
is locked while writing the mail so that there can only be as
many concurrent SMTP sessions as there are logs. On the
other hand, the same user can receive several mails at the
same time without causing any waiting for locks. When the
storage space is too full or Meta is idle, a garbage collector
is run that will copy the non-deleted mails from a full log
to new logs. To avoid unnecessary coping of the message
when it is garbage-collected several times, a generational
garbage-collecting algorithm is used. A picture of the logs
is shown in figure 4. The arrows point to the first free posi-
tion in the corresponding log.

The assumptions that we base this choice of data structure
on is that mails stay around for a short period of time and
are then picked up the client. If the goal was to support
something like IMAP where the mails are stored for a long
time, some other organisation would probably be better.

Because all mails are received over SMTP and fetched over
POP, both of which has the same formatting and quoting
rules (CR+LF as line terminator, a single dot on a line as
message terminator), the messages are stored in the wire
format and are never converted. The CNFS storage for INN
can also be configured to behave this way, see [7].

7 Security

Meta runs as an unprivileged user in a chrooted directory.
Because no users need to access the spool files, their per-
missions and owners are not important. All files are owned
by the ‘meta’ user and only read and writable by this user.
The mail users need not have accounts and/or shells on the
mail hub and in fact that is the recommended configuration.
It also makes for a more stable solution as the users have
less opportunities to endanger the stability or performance
of the mail hub.

The only operation that cannot be done as the meta user is
binding the smtp and pop ports. That is done by a small
‘nanny’ program that just binds the ports, does a chroot to
the meta directory, changes the uid, and starts the meta pro-

gram itself. The nanny also is responsible for re-spawning
meta. It is a simple program and consists of only ˜ 70 lines
of code and should be easy to audit. That is the only code
that run as root. On an operating system that is not that
paranoid about ports< 1024 it is not needed either. No
program has any set[ug]id bit.

Trying to keep it simple by having it just solve one well-
defined problem and not doing any complex stuff should
also help making it more secure.

The security model used by Meta is quite different from
recent MTAs that have focused on security, typically
qmail [9] and postfix [8]. Both of them are composed of
a collection of small programs that communicate through
IPC and the file systems and that do not trust each other.
Meta is a “monolithic” program that handles all in the same
program and process.

8 Layers and “back-ends”

Meta has a well-defined API to allow new back ends (called
layers) to be added that receive (and store) mails differ-
ently. Currently the above described log-based layer, a
layer that only sorts mails, and a null layer have been im-
plemented.

9 User Database

Meta keeps a database of all its users. This is completely
different and separate from the ordinary/etc/passwd .
The database can however easily be generated from a stan-
dard passwd-file. The database contains the complete mail
addresses of the users, including the domain part. This al-
lows Meta to do a lookup on the complete address when
checking if it should accept mail for a user. Only if the en-
tire address exists in the database is the mail accepted. Is is
therefore unnecessary to configure for what domains Meta
should receive mail.

Other per-user information for features that we have not
implemented yet (mail quotas, spam filtering,. . . ) will also
be stored in the user database.

10 Clustering

While it should be possible for large mail-hubs to run a
single Meta instance on a single machine, the reliability
might not be as high as needed and there might not be
room to grow the mail volume gracefully. Therefore we
are in the process of implementing support in Meta for run-
ning a cluster consisting of collaborating Meta daemons on
different machines . We assume that all of them will be pre-
sented as SMTP-servers to the Internet at large and to the
POP users and therefore be identical. Also, the bandwidth



A B C D

1. recv mail

2. send a copy

4. gather mails

3. user pops 5. send back mails

Figure 5: Mail cluster

between is considered to be plentiful. The goal here is that
Meta should scale, that is, it should be possible to handle
more users and larger number of mails by just adding more
machines. These machines should share the load and be
configured as part of the cluster easily. Meta also tries to
store the mails redundantly so that no mails are lost should
a single machine crash. The users need not keep tracking
of on which machine they have their mails stored but are
able to fetch them from any node in the cluster.

A typical scenario is shown in figure 5. First in step (1),
the sender of the mail looks up MX records for the Meta
cluster. In this case, the first host returned isA. A SMTP
connection is opened toA which will while receiving the
mail (2) send a copy of it toC. At some time later, a user
tries to pop her mail and looks up an A record, gettingB. In
(3) she starts popping fromB. B will then retrieve the mails
stored onA andC in (4) and in (5) send them to the user.

An obvious question is how to choose the other server that
will store the redundant copy of a mail. Two policies seem
the most appropriate at the moment:

• trying to keep all the mails belonging to a single user
on the same host. That way all messages will be stored
on the machine that received the mail and the “home”
machine for the user.

• choose the least loaded machine, which should give
reasonable load-sharing over the nodes in the cluster.

To get some idea as to how much sending an extra copy of
the incoming mails to another server would cost, we added
that function to the server used in section 5. As is shown in
figure 6, the overhead is quite small (around 15%).

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

el
ap

se
d 

tim
e 

in
 s

ec
on

ds

number of mails

’meta-nofsync-pipe-numbers’
’meta-nofsync-pipe-peer-numbers’

’meta-nofsync-numbers’

Figure 6: Overhead of sending a copy to a peer

10.1 Load Balancing

The load-sharing could be performed by having multiple A
records, a load-balancing name server ([17]), or some kind
of TCP router ([18, 19]). We have chosen to start with the
simplest solution (DNS round-robin) and see if that gives
good enough load balance.

11 Usage

Meta is not quite ready to be used in production yet but
there are some sites running it experimentally and it is be-
ing installed as a front-end to the mail system at a large
Swedish ISP. Meta was chosen for its performance at re-
ceiving mail.

12 Related Work

Christenson [3] tries to make a scalable mail solution using
file servers (NFS) to distribute the mail storage (and thus
vulnerable to network-partition). The smtp and pop hosts
are not keeping any local data. The local delivery agent
is replaced but otherwise a stock sendmail is used. Meta
tries to solve a similar problem but from scratch instead of
building on sendmail.

Carson[4] discusses the security paradigm “least privilege”
applied on mailing. Tries to solve the problem with giving
sendmail access to port 25 (SMTP/TCP) by adding a wrap-
per to sendmail that does that. Meta does exactly that, but
do the delivery to the mailbox itself instead of using a local
delivery agent.

Knowles[5] focuses on transport issues (inbound, mostly
outbound, mailing lists). Arguing that the mail queueing is
the slow part of mail delivery, showing techniques to speed-



up sendmail’s delivery time. Kolstad[6] also tries to tune
sendmail to deliver mail faster for mailing lists. Meta is
not today trying to solve that problem, it is trying to make
in-bound delivery as fast as possible. A outbound MTA
could use Meta’s logs to avoid most of the problems with
the queue-files described in the paper.

Porcupine[1, 2] is architecturely very similar to Meta. They
also build a cluster of identical server machines that act as
a large mail server. The storage of mails locally on the
nodes is however done differently from Meta. The next
stage of the Porcupine project underway now is aimed at
generalising the ideas that were used for building their mail
server.

13 Future Work

There a more work to be done with regards to clustering, to
see what are good policies for how to choose server nodes
and when to migrate mails between nodes. Load balancing
also requires some experimentation and measurements.

There are functionality that we have not implemented but
is probably going to be needed like mail quotas, filtering
per user (for spam), and other related functionality.

14 More Information

See
http://www.stacken.kth.se/projekt/meta .

15 Acknowledgements

Björn Grönvall was responsible for a large part of the initial
ideas that led to Meta. Magnus Ahltorp has written part of
the code and has also participated in the discussions about
Meta.

References

[1] Yasushi Saito, Brian Bershad, Hank Levy, and
Eric Hoffman,The Porcupine Scalable Mail Server,
SIGOPS European Workshop, Sintra, Portugal.
September, 1998.

[2] David Becker, David Becker, Brian Bershad,
Bertil Folliot, Eric Hoffman, Hank Levy, and Ya-
sushi Saito,The Porcupine Project, http://www.
porcupine.cs.washington.edu/

[3] Nick Christenson Tim Bosserman, and David Beck-
emeyer , A Highly Scalable Electronic Mail Service
Using Open Systems, USENIX Symposium on Inter-
net Technologies and Systems, Monterey California
(1997)

[4] Mark E. Carson,Sendmail without the Superuser, 4th
UNIX Security Symposium, Santa Clara California
(1993)

[5] Brad Knowles, Sendmail Performance Tuning for
Large Systems, SANE98, Maastricht, The Nether-
lands (1998)

[6] Rob Kolstad, Tuning Sendmail for Large Mailing
Lists, LISA97, San Diego, California (1997)

[7] Scott Lystig Frichie,The Cyclie News Filesystem:
Getting INN To Do More With Less, LISA XI, San
Diego, CA (1997)

[8] Wietse Venema,Wietse’s Postfix Project,
http://www.postfix.org/

[9] Dan Bernstein,qmail: a replacement for sendmail,
http://www.qmail.org/

[10] Eric Allman,Sendmail,
http://www.sendmail.org/ ,
http://www.sendmail.com/

[11] Jonathan B. Postel,SIMPLE MAIL TRANSFER PRO-
TOCOL, Information Sciences Institute, University of
Southern California (1982)

[12] J. Myers, M. RosePost Office Protocol - Version
3 Carnegie Mellon, Dover Beach Consulting, Inc.
(1996)

[13] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,
B. Lyon, Design and Implementation of the Sun Net-
work Filesystem, In Proceedings of the USENIX
Summer Technical Conference, 1985.

[14] M. Crispin, Internet Message Access Protocol - Ver-
sion 4rev1, University of Washington (1996)

[15] Brian Kantor, Phil Lapsley,Network News Transfer
Protocol, U.C. San Diego and U.C. Berkeley (1986)

[16] N. Freed, SMTP Service Extension for Command
Pipelining, Innosoft (1997)

[17] Roland J. Schemers, III,lbnamed: A Load Balancing
Name Server in Perl, LISA IX, Monterey, CA (1995)

[18] Cisco,Cisco LocalDirector,
http:
//www.cisco.com/warp/public/cc/
cisco/mkt/scale/locald/index.shtml

[19] IBM, SecureWay Network Dispatcher,
http://www.software.ibm.com/
network/dispatcher/


